Physique Optique physique

2011-2012

Table des matières

Ι	Mécanique du solide	11
1	Cinématique du solide	13
2	Élements cinétiques des systèmes de points matériels	15
3	Théorèmes généraux 3.1 Action mécanique sur un système : 3.2 Théorèmes généraux 3.3 Théorèmes du moment cinétique et barycentre 3.4 Actions de contacts entre deux solides 3.5 Cas des référentiels non galiléens	19 19 20 20 20 21
4	Lois de Coulomb du frottement de glissement 4.1 Lois phénoménologiques :	23 23
5	Aspect énergétique de la dynamique des systèmes 5.1 Puissance et travail :	 25 25 26 26 26 26 27 27 27 27
6	Analyse spectrale 6.1 Décomposition en série de Fourier 6.2 Spectre d'un signal périodique	31 31 32
7	Filtrage par les circuits linéaires 7.1 Rappels	 33 33 34 34 34 34 35 35

		7.3.4 Tracé du diagramme de Bode asymptotique	35
		7.3.5 Calcul de la largeur de la bande passante	35
	7.4	Passe-bas passif d'ordre 2	35
	7.5	Autres filtres passifs d'ordre 2	36
	7.6	Filtres actifs et filtres passifs	36
	7.7	Comportement intégrateur d'un circuit	36
		7.7.1 Intégrateur idéal	36
		7.7.2 Comportement d'un circuit intégrateur	36
	7.8	Comportement dérivateur d'un circuit :	36
		7.8.1 Dérivateur idéal	36
		7.8.2 Comportement d'un circuit dérivateur	37
8	Con	pléments - Rappels 3	9
	8.1	Stabilité des circuits linéaires du $1^{\rm er}$ et du $2^{\rm nd}$ ordre $\ldots \ldots \ldots$	39
		8.1.1 $1^{\rm er}$ ordre	39
		8.1.2 2^{nd} ordre	39
	8.2	Équation différentielle et paramètres du circuit	39

III Chimie

9	Pote	entiel d	chimique	43
	9.1	Foncti	on enthalpie libre	43
		9.1.1	Définition	43
		9.1.2	Propriétés	43
		9.1.3	Expression différentielle	44
	9.2	Notion	de potentiel chimique	44
		9.2.1	Système de composition variable	44
		9.2.2	Équilibre d'un corps pur sous deux phases	44
	9.3	Expres	ssions des potentiels chimiques	45
		9.3.1	Rappels sur l'état standard	45
		9.3.2	Corps purs	45
		9.3.3	Mélanges idéaux	45
		9.3.4	Cas des solutions acqueuses	46
	9.4	Compl	éments, relecture mathématique	46
		9.4.1	Identité d'Euler	46
		9.4.2	Théorème de Schwartz	47
		9.4.3	Relation de Gibbs-Helmholtz	47
10	Gra	ndeurs	s de réaction	49
	10.1	Définit	ions	49
		10.1.1	Variables de de Donder	49
		10.1.2	Opérateur de Lewis	49
		10.1.3	Interprétation	49
		10.1.4	Grandeur standrad de réaction	50
	10.2	Applic	ation à l'enthalpie	50
		10.2.1	Enthalpie (standard) de réaction	50
		10.2.2	Intérêt	50
		10.2.3	Enthalpie molaire standard de formaton, loi de Hess	50
		10.2.4	Loi de Kirchhoff	50
	10.3	Applic	ation à l'entropie	51

	10.3.1 Entropie (standard) de réaction $\ldots \ldots \ldots$	51
	10.3.2 Principe de Nernst \ldots	51
	10.3.3 Loi de Kirchhoff \ldots	51
	10.3.4 Ordre de grandeurs	51
10.4	Application à l'enthalpie libre	51
	10.4.1 Enthalpie libre (standard) de réaction	51
	10.4.2 Calcul	51
L'éq	uilibre chimique	53
11.1	Affinité chimique	53
	11.1.1 Définitions \ldots	53
	11.1.2 Évolution du système	53
11.2	Quotient de réaction - Constante d'équilibre	53
	11.2.1 Définition	53
	11.2.2 Constante d'équilibre	54
	11.2.3 Évolution \ldots	54
	11.2.4 Température d'inversion	54
	11.2.5 Loi de Van't Hoff	54
11.3	Lien avec la création d'entropie	54
11.4	Application	54
	11.4.1 Système gazeux	54
	11.4.2 Solutions acqueuses	54
	11.4.3 Équilibre hétérogène	55
Dép 12.1	lacement et rupture d'équilibre	5 7 57
12.2	Variance	57
	12.2.1 Définition	57
	12.2.2 Calcul	57
12.3	Méthode utilisée	57
12.4	Évolution de la température isobare	58
12.5	Modification de pression isotherme	58
Diag	gramme binaire liquide vapeur	59
13.1	Introduction	59
	13.1.1 Cadre de l'étude	59
	13.1.2 Notation \ldots	59
	13.1.3 Principe de l'étude	59
13.2	Cas de la miscibilité totale idéale	60
	13.2.1 Diagramme isotherme	60
	13.2.2 Diagrammes isobares	60
	13.2.3 Règle des moments (chimiques)	60
13.3	Cas de la miscibilité totale non idéale	60
13.4	Cas de la non miscibilité : hétéroazéotropie	61
		- 4
r C	Optique physique 6	3
C Intr	Optique physique 6 oduction à l'optique physique 6	33 35
7 C Intro 14.1	Optique physique 6 oduction à l'optique physique 6 Modèle scalaire de la lumière	33 35 65
	 10.4 L'éc 11.1 11.2 11.3 11.4 Dép 12.1 12.2 12.3 12.4 12.5 Diag 13.1 13.2 13.3 13.4 	10.3.1 Entropie (standard) de réaction 10.3.2 Principe de Nernst 10.3.4 Ordre de grandeurs 10.3.4 Ordre de grandeurs 10.4.1 Application à l'enthalpie libre 10.4.1 Enthalpie libre (standard) de réaction 10.4.2 Calcul 10.4.2 Calcul 10.4.2 Calcul 11.1 Définitions 11.1.1 Définition 11.1.2 Évolution du système 11.2.1 Définition 11.2.2 Constante d'équilibre 11.2.3 Évolution 11.2.4 Température d'équilibre 11.2.5 Loi de Van't Hoff 11.3 Lia avec la création d'entropie 11.4 Application 11.4.1 Système gazeux 11.4.2 Solutions acqueuses 11.4.3 Équilibre 11.4.3 Équilibre 12.4 Sustème gazeux 11.4.1 Système gazeux 11.4.2 Solutions acqueuses 11.4.3 Équilibre 12.2 Calcul

	14.1.2 Postulats
	14.1.2 Pécontours luminour
	$14.1.5 \text{ freepteurs tummeux} \dots \dots$
144	
14.2	2 Lumiere monochromatique
	14.2.1 Définition $\ldots \ldots \ldots$
	14.2.2 Représentation complexe
	14.2.3 Expression de l'éclairement
14.3	3 Retard de phase, chemin optique
	14.3.1 Généralisation
	14.3.2 Cas particulier
14	1 Théorème de Malus
11.	14.4.1 Surface d'ande
	$14.4.1 \text{Surface u onde} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	14.4.2 Enonce
	14.4.3 Application : formulation alternative du signatisme
	14.4.4 Propriété $\ldots \ldots \ldots$
14.5	5 Exemples d'onde $\ldots \ldots \ldots$
	14.5.1 Onde sphérique
	14.5.2 Onde plane
15 Int	erférences à deux ondes 69
15.1	Éclairement résultant dû à deux ondes monochromatiques
101	15.1.1 Calcul avec les réels
	15.1.2 Interprétation
	15.1.2 Interpretation
	15.1.5 Utilisation de la notation complexe
	15.1.4 Notion de cohérence
	15.1.5 En résumé \ldots \ldots \ldots 70
15.2	2 Figures d'interférences
	15.2.1 Champs d'interférences
	15.2.2 Franges d'interférences
	15.2.3 Exemple
15 :	3 Trous de Young
10.0	15.31 Dispositif
	$15.3.1 \text{ Disposition} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	15.3.3 Description
15.4	1 Deux sources ponctuelles à l'infini
15.5	5 Deux sources ponctuelles, écran perpendiculaire à l'axe des sources $\dots \dots \dots 72$
15.0	5 Localisation \ldots \ldots \ldots \ldots 72
15.'	7 Quelques dispositifs interférométriques
15.8	8 Utilisation d'une lentille dans l'observation des interférences
16 L'i	nterféromètre de Michelson 73
16.1	Interféromètre idéal
16.5	2 Utilisation avec une source ponctuelle à distance finie
	16.2.1 Repliement
	16.2.2 Observation des interférences 75
16 '	$\frac{10.2.2}{2} \text{ Observation des interferences} \dots \dots$
10.0	$\frac{16.21}{16.21}$
	10.5.1 Avantages - Inconvenients
	10.3.2 Lame d'air
	16.3.3 Coin d'air $\ldots \ldots 74$
16.4	1 Interféromètre réele \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $.$

17 Inte	erférences en lumière partiellement cohérente	75
17.1	Position du problème	75
17.2	Contraste local	75
	17.2.1 Définition	75
	17.2.2 Un résultat \ldots	75
17.3	Sources ponctuelles multiple ou souce étendue : cohérence spatiale	75
	17.3.1 Principe d'étude	75
	17.3.2 Trous de Young éclairés par deux sources ponctuelles	76
	17.3.3 Trous de Young éclairés par une fente source parallèle aux sources	76
	17.3.4 Passage aux fentes d'Young	76
17.4	Source polychromatique cohérente temporelle :	77
	17.4.1 Démarche	77
	17.4.2 Source bichromatique	77
	17.4.3 Raie à profil rectangulaire	77
	17.4.4 En lumière blanche	78
	17.4.5 Lien avec le train d'onde	78
	17.4.6 Conclusion, généralisation	78
17.5	Un point de vue général	78
18 Les	réseaux	79
18.1	Généralités	79
	18.1.1 Définition	79
	18.1.2 Exemples	79
	18.1.3 Modélisation pour l'étude	79
	18.1.4 Cadre de l'étude	79
18.2	Formule des réseaux	79
	18.2.1 Manipulation	79
	18.2.2 Interprétation	79
18.3	Le minimum de dérivation	80
18.4	Utilisation en lumière polychromatique	80
19 Dif	Traction	81
19.1	Introduction	81
19.2	Principe de Huygens-Fresnel	81
19.3	Diffraction de Fraunhofer	81
	19.3.1 Cadre de l'étude	81
	19.3.2 Formulation mathématique	82
	19.3.3 Autre forme opérationnelle avec des différences de chemins optiques	82
19.4	Diffraction par une ouverture rectangulaire	82
	19.4.1 Calcul de l'éclairement	82
	19.4.2 Description de la figure	82
	19.4.3 Passage à la fente fine	83
	19.4.4 Utilisation d'une lentille	83
19.5	Ouverture circulaire	83
19.6	Importance de la diffraction dans la formation des images en optique géométrique	e 83
	19.6.1 Problématique \ldots	83
	19.6.2 Lien avec la diffraction à l'infini	83
	19.6.3 Critère de Rayleigh	83
19.7	Quelques propriétés générales	84
	19.7.1 Translation de la pupille diffractante	84

19.7.3 Ensemble de pupilles identiques se déduisant les unes des autres par des translations 84

\mathbf{V}	\mathbf{El}	ectrostatique	85
20	Ana	lyse vectorielle	87
	20.1	Notion de champ	87
	20.2	Circulation d'un champ de vecteur	87
		20.2.1 Circulation élémentaire	87
		20.2.2 Circulation finie	87
	20.3	Flux d'un champ de vecteurs	87
		20.3.1 Flux élémentaire	87
		20.3.2 Flux à travers une surface finie non fermée	88
		20.3.3 Flux à travers une surface fermée	88
	20.4	Les opérateurs	88
	20.1	20.4.1 Gradient	88
		20.4.2 Divergence	88
		20.4.2 Divergence	80
		20.4.5 I aplacion scalairo	80
		20.4.5 Laplacien vectorial	80
		20.4.5 Daplacient vectorier	80
	20 F	20.4.0 Querques relations entre operateurs	00
	20.5	20.5.1 Théorème d'Ogtrograddly	90
		20.5.1 Théorème de Stelvez	90
		20.5.2 Theoreme de Stokes	90
21	Rap	pels et compléments d'électrostatique	91
	21.1	Les distributions	91
	21.2	Champ électrostatique	91
	21.3	Relecture du thorème de Gauss	91
		21.3.1 Énoncé sous forme intégrale	91
		21.3.2 Formulation locale	91
	21.4	Potentiel électrostatique	92
	21.1	21.4.1 Circulation	92
		21.4.2 Formulation locale	92
		21.1.2 Formatation locale	92
		21.4.6 Équipotentielles	92 92
	21 5	Équation de Poisson	02
	21.0	21.5.1. Régultat	02 02
		21.0.1 10.501000	52
22	Ond	es electromagnétiques	93
23	Intr	oduction aux ondes électromagnétiques	95
	23.1	Ondes	95
		23.1.1 Définition	95
		23.1.2 Solution générale	95
	23.2	Cas des ondes electromagnétiques	95
		23.2.1 Propagation des potentiels	96
	23.3	Des solutions particulières : les OPPM	96
	_0.0	23.3.1 Définition	96
		23.3.2 Utilisation des complexes	90 96
		20.0.2 Companyon des complexes	50

on de Maxwell en notation complexe	17
on de dispersion	17
ure de l'onde plane progressive monocrhomatique 9	17
e de phase d'une onde plane progressive monochromatique 9	17
tique	17
é d'énergie	17
r de Poynting	17
e de propagation de l'énergie 9	18
té ou éclairement (optique)	8
	•
ondes planes progresives monochromatiques 9	9
ondes planes progresives monochromatiques 9 9 9	9 9
ondes planes progresives monochromatiques 9	9 19 19
ondes planes progresives monochromatiques 9	9 9 9 9
ondes planes progresives monochromatiques 9	9 19 19 19
ondes planes progresives monochromatiques 9	9 19 19 10
ondes planes progresives monochromatiques 9	9 19 19 10 10
	bin de Maxwen en notation complexe :

Première partie Mécanique du solide

Cinématique du solide

Définition : Un solide est un système de points matériels tels que la distance entre deux points A et B quelconques de ce solide est une constante au cours du temps.

Degrés de liberté : Ce sont les paramètres à connaître pour savoir où se trouve le solide et dans quelle configuration. Le nombre de degrés de liberté détermine le nombre d'équations à écrire.

Exemples de mouvements :

- Translation : $\left(\frac{d\overrightarrow{AB}}{dt}\right)_{/\mathscr{R}} = \overrightarrow{0} \Rightarrow \overrightarrow{v}(A)_{/\mathscr{R}} = \overrightarrow{v}(B)_{/\mathscr{R}}.$
- Rotation autour d'un axe fixe dans \mathscr{R} : Rotation caractérisée par le vecteur rotation $\overrightarrow{\omega}$. $\forall P \in S, \ \overrightarrow{v}(P) = \overrightarrow{\omega}(S_{/\mathscr{R}}) \land \overrightarrow{OP}.$
 - $\overrightarrow{\omega}$ mesure le taux de variation angulaire du solide à partir d'une direction fixe de \mathscr{R} .
- Rotation autour d'un axe de direction fixe dans \mathscr{R} : C'est une combinaison d'un mouvement de rotation autour d'un axe Δ fixe dans un référentiel \mathscr{R}' , \mathscr{R}' étant en translation par rapport à \mathscr{R} .

Champs des vitesses dans un solide : Relation de Varignon : relation entre les vitesses de deux points appartenant au même solide. Soit A et B deux points d'un solide S. On reprend les notations du cas « rotation autour d'un axe de direction fixe dans \mathscr{R} ».

$$\overrightarrow{v}(B)_{/\mathscr{R}} = \overrightarrow{v}(A)_{/\mathscr{R}} + \overrightarrow{\omega}(S_{/\mathscr{R}}) \wedge \overrightarrow{AB}$$

Le champ des vitesses a une structure de torseur.

Torseur cinématique dont la résultante $\overrightarrow{\omega}(S_{/\mathscr{R}})$ et le moment résultant en A est $\overrightarrow{v}(A)$ ce que l'on note : $\{\overrightarrow{\omega}(S_{/\mathscr{R}}), \overrightarrow{v}(A)\}_{/A}$

Cinématique du contact entre deux solides : Soit deux solides S_1 et S_2 , en contact ponctuel au point I. On suppose l'existence d'un plan tangent commun aux deux solides en I. On considère deux points matériels I_1 et I_2 , appartenant à S_1 et S_2 , qui sont confondus avec Ià l'instant considéré.

 S_2 peut être en translation par rapport à S_1 . On la caractérise par la vitesse de glissement de S_2 par rapport à S_1 . Cette vitesse appartient nécessairement au plan tangent commun.

$$\overrightarrow{v_g}(S_2/S_1) = \overrightarrow{v}(I_2 \in S_2) - \overrightarrow{v}(I_1 \in S_1)$$

 S_2 peut également être en rotation par rapport à S_1 . Cette rotation est caractérisée par un vecteur rotation. ,

$$\overrightarrow{\Omega}_{2/1} = \overrightarrow{\Omega}_N + \overrightarrow{\Omega}_t$$

 $\overrightarrow{\Omega}_N$, composante normale, caractérise le pivotement de S_2 par rapport à S_1 . $\overrightarrow{\Omega}_t$, composante tangentielle, caractérise le roulement de S_2 par rapport à S_1 .

Cas du roulement sans glissement : S_2 roule sans glisser sur S_1 si :

- $\overrightarrow{v_g} = \overrightarrow{0}$ et
- s'il n'y a pas de pivotement i.e. $\overrightarrow{\Omega}_N = \overrightarrow{0}$.

Elements cinétiques des systèmes de points matériels - Cas du solide

Notations :

- Référentiel : \mathscr{R} ;
- Système : Σ .

Système discret : N points matériels M_i de masse m_i , $\overrightarrow{v}(M_i)_{\mathscr{R}} = \overrightarrow{v_i}$. Masse totale : $m = \sum m_i$. Système continu de volume $V : d\tau$ centré en Q de masse dm_Q . Masse totale : $\iiint dm_Q$.

Barycentre : Le barycentre G d'un système Σ est l'unique point tel que $\sum_{i=1}^{n} m_i \overrightarrow{GM_i} = \overrightarrow{0}$ ou rrr

$$\iiint_{V} \overrightarrow{GQ} dm_{q} = \overrightarrow{0}.$$

$$\forall A, \sum_{i=1}^{N} m_{i} \overrightarrow{AM_{i}} = \sum_{i=1}^{N} m_{i} \overrightarrow{AG} = \left(\sum_{i=1}^{N} m_{i}\right) \overrightarrow{AG} = m \overrightarrow{AG} \text{ ou } \iiint_{V} \overrightarrow{AQ} dm_{Q} = m \overrightarrow{AG}.$$

Si Σ présente un plan de symétrie pour la distribution de masse, G appartient à ce plan. Le barycentre G de $\Sigma_1 \cup \Sigma_2$ est le barycentre de $((G_1, m_1), (G_2, m_2))$.

Référentiel barycentrique : Le référentiel barycentrique pour cette étude est le référentiel en translation par rapport à \mathscr{R} tel que G y soit immobile. On le note \mathscr{R}^* .

Pour \overrightarrow{A} grandeur vectorielle quelconque, $\left(\frac{d\overrightarrow{A}}{dt}\right)_{(\mathscr{A}^{\star})} = \left(\frac{d\overrightarrow{A}}{dt}\right)_{(\mathscr{A}^{\star})}$ car \mathscr{R}^{\star} est en translation par rapport à \mathcal{R} .

Quantité de mouvement :

- Définition : $\overrightarrow{P}(\Sigma)_{/\mathscr{R}} = \sum_{i=1}^{N} m_i \overrightarrow{v_i}$ ou $\iiint \overrightarrow{v}(Q) dm_Q$.
- Propriétés : O fixe. $\overrightarrow{P}(\Sigma)_{/\mathscr{R}} = m \overrightarrow{v}(G)_{/\mathscr{R}}$.
- Cas du référentiel barycentrique : $\overrightarrow{P}^{\star}(\Sigma)_{/\mathscr{R}^{\star}} = m \overrightarrow{v}(G)_{/\mathscr{R}^{\star}} = \overrightarrow{0}$.

Moment cinétique en un point :

- Définition : A un point quelconque. $\overrightarrow{L}_{A}(\Sigma)_{\mathscr{R}} = \sum_{i=1}^{N} \overrightarrow{AM_{i}} \wedge m_{i} \overrightarrow{v_{i}}$ ou $\iiint \overrightarrow{AQ} \wedge dm_{Q} \overrightarrow{v}(Q)$.
- Torseur cinétique : $\overrightarrow{L}_{/B}(\Sigma)_{/\mathscr{R}} = \overrightarrow{L}_{/A}(\Sigma)_{/\mathscr{R}} + \overrightarrow{P} \wedge \overrightarrow{AB}$. On a un torseur cinétique de résultante \overrightarrow{P} et de moment $\overrightarrow{L}_{/A}$.
- Cas du référentiel barycentrique : $\overrightarrow{L}_{/B}(\Sigma)^* = \overrightarrow{L}_{/A}(\Sigma)^* + \overrightarrow{P}_{\overrightarrow{A}}^{\prime} \wedge \overrightarrow{AB}$. Le moment cinétique

ne dépend pas du point de calcul. On le note L^{\star}

Dans le référentiel barycentrique, le moment cinétique ne dépend pas du point de calcul. On le note \vec{L}^{\star} .

Moment cinétique par rapport à un axe orienté : Le moment cinétique de Σ par rapport à Δ est la projection de $\overrightarrow{L}_{A}(\Sigma)_{\mathscr{R}}$ où A est un point quelconque de Δ .

$$L_{/\Delta}(\Sigma) = \overrightarrow{u} \cdot \overrightarrow{L}_{/A}(\Sigma)$$

Énergie cinétique : $Ec(\Sigma)_{\mathscr{R}} = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2$ ou $\iiint_V \frac{1}{2} dm_Q \cdot v(Q)^2$.

Théroèmes de König :

• Relatif au moment cinétique :

$$\overrightarrow{L}_{/A}(\Sigma)_{/\mathscr{R}} = \overrightarrow{L}^{\star} + \overrightarrow{AG} \wedge m \overrightarrow{v}(G)_{/\mathscr{R}}$$

• Relatif à l'énergie cinétique :

$$Ec(\Sigma)_{\mathscr{R}} = Ec(\Sigma)^{\star} + \frac{1}{2}mv(G)_{\mathscr{R}}^{2}$$

Cas du solide :

- Cas de la translation : le solide en translation a les mêmes éléments cinétiques que son barycentre affecté de toute la masse.
- Cas de la rotation autour d'un axe fixe :
 - Quantité de mouvement : $\overrightarrow{P} = m \overrightarrow{v}(G) \neq \overrightarrow{0}$ dès que $g \notin \Delta$.
 - Moment cinétique en un point $A \in \Delta$:

$$\overrightarrow{L}_{/A}(\Sigma) = \left[\iiint_{\text{Solide}} HQ^2 dm_Q \right] \overrightarrow{\omega} - \iiint_{\text{Solide}} (\overrightarrow{AH} - \overrightarrow{\omega}) \overrightarrow{HQ} dm_Q$$

S'il existe un plan de symétrie contenant Δ ou si le plan passant par A est perpendiculaire à Δ est un plan de symétrie, alors la composante perpendiculaire à ω est nul. On dit que Δ est un axe principal d'inertie. On pose $J_{\Delta} = \iiint HQ^2 dm_Q = \iiint r^2 dm$.

C'est le moment d'inertie du solide par rapport à Δ .

- $\overrightarrow{L}_{/A} = J_{\Delta} \cdot \overrightarrow{\omega}$. $[J_{\Delta}] = kg \cdot m^2$. J_{Δ} ne dépend que de la masse du solide. Moment cinétique par rapport à l'axe de rotation : $L_{/\Delta} = J_{\Delta} \cdot \omega$ avec $\omega = \overrightarrow{\omega} \cdot \overrightarrow{u}$ même si Δ n'est pas axe principal d'inertie.
- Énergie cinétique : $Ec(\Sigma) = \frac{1}{2}J_{\Delta}\omega^2$ même si Δ n'est pas axe principal d'inertie mais doit être fixe.

• Cas de la rotation autour d'un axe de direction fixe : Dans \mathscr{R}^* , le solide a un mouvement de rotation autour de l'axe fixe passant par G et parallele à la direction de rotation. On revient dans \mathscr{R} par les théorèmes de König.

Théorème d'Huygens : Soit Δ_G une droite parallèle à Δ , alors $J_{\Delta} = J_{\Delta_G} + ma^2$.

18 CHAPITRE 2. ÉLEMENTS CINÉTIQUES DES SYSTÈMES DE POINTS MATÉRIELS

Théorèmes généraux de la dynamique des systèmes fermés

3.1 Action mécanique sur un système :

Idée générale : On admet que les effets mécaniques qu'exerce un système Σ' sur un système Σ sont entièrement décrits par un torseur de résultante \overrightarrow{R} et par un moment résultant $\overrightarrow{\mathcal{M}}_{/A}$.

Force unique appliqué en un point : On applique \overrightarrow{F} en A. $\overrightarrow{\mathcal{M}}_{/A}$ n'est pas le moment de \overrightarrow{R} en A. $(\overrightarrow{R} = \overrightarrow{F})$

$$\begin{cases} \overrightarrow{R} = \overrightarrow{F} \\ \overrightarrow{\mathcal{M}}_{/A} = \overrightarrow{AA} \land \overrightarrow{F} = \overrightarrow{0} \end{cases}$$

Ensemble de forces : On applique $\{\overrightarrow{F_i}\}$ en $\{M_i\}$. $\begin{cases} \overrightarrow{R} = \sum \overrightarrow{F_i} \\ \overrightarrow{\mathcal{M}}_{/A} = \sum \overrightarrow{AM_i} \wedge \overrightarrow{F_i} = \overrightarrow{0} \end{cases}$

Couple : C'est une action particulière dont la résultante est nulle. $\begin{cases} \overrightarrow{R} = \overrightarrow{0} \\ \overrightarrow{\mathcal{M}}_{/A} = ? \end{cases}$

Actions intérieures : Il y a des actions entre deux points quelconques M_i et M_j du système $\begin{cases} \Sigma \text{ étudié.} \\ \overrightarrow{R}_{\text{int}} = \overrightarrow{0} \\ \overrightarrow{\mathcal{M}}_{/A \text{ int}} = \overrightarrow{0} \end{cases}$

Principe des actions réciproques : Systèmes Σ_1 et Σ_2 . $\Sigma_1 \to \Sigma_2 : \begin{cases} \overrightarrow{R}_{1\to 2} \\ \overrightarrow{\mathcal{M}}_{/A \ 1\to 2} \end{cases}$ et $\Sigma_2 \to \Sigma_1 : \begin{cases} \overrightarrow{R}_{2\to 1} \\ \overrightarrow{\mathcal{M}}_{/A \ 2\to 1} \end{cases}$. $\begin{cases} \overrightarrow{R}_{1\to 2} = -\overrightarrow{R}_{2\to 1} \\ \overrightarrow{\mathcal{M}}_{/A \ 1\to 2} = -\overrightarrow{\mathcal{M}}_{/A \ 2\to 1} \end{cases}$

3.2 Théorèmes généraux

Hyothèse et notations : Système Σ étudié dans \mathscr{R} galiléen.

Actions extérieures $\begin{cases} \vec{R}_{\text{ext}} \\ \vec{\mathcal{M}}_{/A \text{ ext}} \end{cases}$

Théorème de la quantité de mouvement : $\overrightarrow{P}(\Sigma_{/\mathscr{R}}) = \overrightarrow{P}$.

$$\left(\frac{dP}{dt}\right)_{/\mathscr{R}} = \overrightarrow{R}_{\text{ext}}$$

Aussi appelé théorème de la résultante cinétique ou théorème de la résultante dynamique. Autre forme : $m \overrightarrow{a}(G) = \overrightarrow{R}_{ext}$: théorème du centre de masse.

Théorème du moment cinétique en un point fixe A : $\overrightarrow{L}_{/A} = \overrightarrow{L}_{/A}(\Sigma_{/\mathscr{R}}).$

$$\left(\frac{d\vec{L}_{/A}}{dt}\right)_{/\mathscr{R}} = \vec{\mathcal{M}}_{/A \text{ ext}}$$

Théorème du moment cinétique par rapport à un axe orienté : $L_{/\Delta} = \overrightarrow{u} \cdot \overrightarrow{L}_{/A}$. On peut prendre A fixe $\in \Delta$.

 $\frac{dL_{/\Delta}}{dt} = \mathcal{M}_{/\Delta \text{ ext}} : \text{théorème scalaire du moment cinétique}$

3.3 Théorèmes du moment cinétique et barycentre

En G dans \mathscr{R} :

$$\left(\frac{d\overrightarrow{L}_{/G}}{dt}\right)_{/\mathscr{R}} = \overrightarrow{\mathcal{M}}_{/G \text{ ext}} = \overrightarrow{\mathcal{M}}_{/A \text{ ext}} + \overrightarrow{R}_{\text{ext}} \wedge \overrightarrow{AG}$$

Dans \mathscr{R}^{\star} :

$$\left(\frac{d\overrightarrow{L}^{\star}}{dt}\right)_{/\mathscr{R}^{\star}} = \overrightarrow{\mathcal{M}}_{/G \text{ ext}} \text{ même si } \mathscr{R}^{\star} \text{ non galiléen.}$$

Théorème du mouvement cinétique scalaire barycentrique : Soit un axe fixe Δ passant par G dans \mathscr{R}^* . \overrightarrow{u} vecteur unitaire de (Δ) .

$$rac{dL^{\star}_{/\Delta}}{dt} = \mathcal{M}_{/\Delta \text{ ext}} : \text{TMCS}^{\star}$$

3.4 Actions de contacts entre deux solides

- Liaison rotule :
 - permet toues les rotations : 3 degrés de libertés.
 - Liaison parfaite si $\overrightarrow{\mathcal{M}}_{/O} = \overrightarrow{0}$.
- Liaison pivot :
 - Un seul degré de liberté : rotation autour d'un axe fixe $\Delta.$
 - Liaison parfaite si $\mathcal{M}_{/\Delta} = 0$.

3.5 Cas des référentiels non galiléens

Si \mathscr{R}' est non galiléen, on rajoute les actions correspondantes aux forces d'inertie d'entrainement et de Coriolis.

$$d\overrightarrow{f_{ie}} = -dm_Q \overrightarrow{a_e}(Q) \Rightarrow \begin{cases} \overrightarrow{R} = \iiint - dm_Q \overrightarrow{a_e}(Q) \\ \overrightarrow{\mathcal{M}}_{/A} \iiint \overrightarrow{AQ} \wedge (-dm_Q \overrightarrow{a_e}(Q)) \end{cases}.$$

Si \mathscr{R}' est en translation par rapport à \mathscr{R} , la force de Coriolis n'intervient pas et $\overrightarrow{a_e}(Q) = \overrightarrow{a_e} = \overrightarrow{a}(O')_{/\mathscr{R}}$. $d\overrightarrow{f_{ie}} = -dm_Q \overrightarrow{a}(O')_{/\mathscr{R}}$.

Lois de Coulomb du frottement de glissement

4.1 Lois phénoménologiques :

Soit deux solides S_1 et S_2 en contact ponctuel en un point I. Actions de contacts : $\begin{cases} \vec{R} = \vec{N} + \vec{T} \\ \vec{\mathcal{M}}_{/I} = \vec{0} \end{cases}$.

Cas du non glissement : Lorsque S_2 ne glisse pas sur S_1 , alors $\begin{cases} \overrightarrow{v_g}(S_2/S_1) = \overrightarrow{0} \\ ||\overrightarrow{T}|| \leq \mu_s ||\overrightarrow{N}|| \end{cases}$

 μ_s est le coefficient de frottement statique entre les deux solides. Il est sans dimension. Il ne dépend que de la nature des deux solides en contact. Remarque : on ne sait rien a priori sur le sens de \overrightarrow{T} .

Cas du glissement : Lorsque S_2 glisse sur S_1 , alors $\begin{cases} \overrightarrow{v_g}(S_2/S_1) \neq \overrightarrow{0} \\ ||\overrightarrow{T}|| = \mu_d ||\overrightarrow{N}|| \end{cases}$ et \overrightarrow{T} est anticolinéaire à la vitesse de glissement de S_2 sur S_1 .

 μ_d est le coefficient de frottement dynamique entre les deux solides. Il est sans dimension. Il ne dépend que de la nature des deux solides en contact.

Quelques valeurs : En général, $\mu_d < \mu_s$ mais les valeurs sont proches. Souvent, on prend $\mu = \mu_s = \mu_d$.

On parle du coefficient de frottement :

- bois / bois : $\mu \approx 0.3$ à 0.5;
- acier / acier (sec) : $\mu \approx 0.15$;
- pneu / route sèche (respectivement mouillée) : $\mu \approx 0.7$ (respectivement 0.1);
- métal / glace : $\mu \approx 0.02$.

Cône de frottement : On se place dans le cas où $\mu = \mu_s = \mu_d$. $\begin{cases} ||\overrightarrow{T}|| \leq \mu ||\overrightarrow{N}|| \text{ non glissement} \\ ||\overrightarrow{T}|| = \mu ||\overrightarrow{N}|| \text{ glissement} \end{cases}$

 $\tan \alpha = \frac{||\overrightarrow{T}||}{||\overrightarrow{N}||} = \mu.$

Dans le cas du glissement, la réaction \overrightarrow{R} est sur le cône d'axe (I, \overrightarrow{N}) et de demi angle au

sommet α tel que tan $\alpha = \mu$. C'est le cône de frottement. Dans le cas de non glissement, la réaction \overrightarrow{R} est à l'intérieur du cône de frottement.

Méthodologie : résolution d'un problème avec frottement solide : On fait une hypothèse de non glissement : on fait les calculs.

On valide puis on détermine les conditions pour lesquelles l'hypothèse initiale est satisfaite.

Aspect énergétique de la dynamique des systèmes

Puissance et travail : 5.1

Notations : Soit Σ un système fermé quelconque avec une distribution continue des efforts / matières.

Sur $d\tau_Q$ centré en Q de vitesse $\overrightarrow{v}(Q)$ s'exerce $d\overrightarrow{f_Q}$ et $\iiint_{U} d\overrightarrow{f_Q} = \overrightarrow{R}$.

Remarque : toujours bien préciser le point d'application de chacun des $d\vec{f_Q}$.

Définition : $\mathcal{P}(t) = \iiint d\vec{f}_Q \cdot \vec{v}(Q)$: puissance totale de l'action sur le système. Le travail élémentaire en t et $t + dt : \delta \mathcal{T} = \mathcal{P}(t)dt$. Le travail fini entre t_1 et t_2 : $\mathcal{T} = \int_{t_2}^{t_2} \delta \mathcal{T} = \int_{t_2}^{t_2} \mathcal{P}(t) dt$.

Cas des actions intérieures : Actions intérieures : $\{\overrightarrow{0}, \overrightarrow{0}\}_{/A}$. Cependant, la puissance des actions intérieures est à priori non nulle. $\mathcal{P}_{int} \neq 0$ en général. On admet :

- \mathcal{P}_{int} ne dépend pas du reférentiel de calcul;
- $\mathcal{P}_{int} \neq 0$ dès que la distance entre 2 points du système qui interagissent varie au cours du temps.

Cas du solide : $\Sigma = S$ un solide.

$$\mathcal{P} = \overrightarrow{R} \cdot \overrightarrow{v}(A) + \overrightarrow{\omega} \cdot \overrightarrow{\mathcal{M}}_{/A}$$

Cas particulier :

- si l'action est un glisseur dont I est le point d'application $(\overrightarrow{\mathcal{M}}_{/I} = \overrightarrow{0})$. $\mathcal{P} = \overrightarrow{R} \cdot \overrightarrow{V}(I)$; si l'action est un couple : $\begin{cases} \overrightarrow{R} = \overrightarrow{0} \\ \overrightarrow{\mathcal{M}}_{/A} = \overrightarrow{\Gamma} \end{cases}$, $\mathcal{P} = \overrightarrow{\omega} \cdot \overrightarrow{\Gamma}$;
- actions intérieures à un solide : $\begin{cases} \overrightarrow{R}_{\text{int}} = \overrightarrow{0} \\ \overrightarrow{\mathcal{M}}_{/A,\text{int}} = \overrightarrow{0} \end{cases}, \mathcal{P}_{\text{int}} \text{ (solide)} = 0.$

Théorème de la puissance et de l'énergie cinétique : 5.2

Soit Σ un système quelconque et \mathscr{R} galiléen.

Théorème de la puissance cinétique :

$$\frac{dEc}{dt} = \mathcal{P}_{\text{ext}} + \mathcal{P}_{\text{int}}$$

Théorème de l'énergie cinétique : Obtenu par intégration entre deux instants t_1 et t_2 : $\mathbf{A} \mathbf{E} = \mathbf{E}_{\mathbf{a}}(\mathbf{A}) = \mathbf{E}_{\mathbf{a}}(\mathbf{A}) = \mathbf{T}$

$$\Delta Ec = Ec(t_2) - Ec(t_1) = \mathcal{I}_{\text{ext}} + \mathcal{I}_{\text{int}}$$

Cas d'un seul solide :

$$\mathcal{P}_{\text{int}} = 0$$
 $\frac{dEc}{dt} = \mathcal{P}_{\text{ext}}$ $\Delta Ec = \mathcal{T}_{\text{ext}}$

5.3Cas des actions de contact entre deux solides :

Deux solides S_1 et S_2 , en contact ponctuel en I. Action de $S_1 \to S_2$: $\begin{cases} \overrightarrow{R} \\ \overrightarrow{\mathcal{M}}_{/I} = \overrightarrow{0} \end{cases}$ et action de $S_2 \to S_1$: $\begin{cases} -\overrightarrow{R} \\ \overrightarrow{\mathcal{M}}_{/I} = \overrightarrow{0} \end{cases}$. $\mathcal{P} = \overrightarrow{T} \cdot \overrightarrow{v_q} (S_2/S_1)$

Puissance nulle si non glissement, négative si glissement.

Solide en rotation autour d'un axe fixe Δ : 5.4

Soit une action $\left\{ \overrightarrow{R}, \overrightarrow{\mathcal{M}}_{/A} \right\}_{/A}$ s'exerçant sur le solide en rotation autour de l'axe fixe Δ . Soit A appartenant au solide et à Δ .

$$\mathcal{P}_{action} = \omega \cdot \mathcal{M}_{/\Delta} \text{ avec } \overrightarrow{\omega} = \omega \cdot \overrightarrow{u} = \dot{\theta} \cdot \overrightarrow{u}$$

D'où $\delta \mathcal{T} = \mathcal{P} dt = \mathcal{M}_{/\Delta} d\theta$ et le travail fini $\mathcal{T} = \int_{t_1 \text{ ou } \theta_1}^{t_2 \text{ ou } \theta_2} \mathcal{M}_{/\Delta} d\theta.$

Cas particulier des liaisons parfaites :

- pour les liaisons pivots parfaites : $\mathcal{P}_{action} = 0$;
- pour les liaisons rotules parfaites : $\mathcal{P}_{action} = 0$.

Énergie potentielle : 5.5

Définition : Soit Σ un système quelconque à n degrés de liberté cinématiques. La configuration du système est repérée par $(q_1(t), \ldots, q_n(t))$. Soit une évolution quelconque du système entre les deux instants t_1 et t_2 : $(q_1(t_1), \ldots, q_n(t_1)) \rightarrow (q_1(t_2), \ldots, q_n(t_2))$ (schéma dans l'espace de configuration du système).

Soit une action agissant sur le système et $\mathcal{T}_{1\rightarrow 2}$ le travail de cette action entre t_1 et t_2 le long de ce chemin. Cette action dérive d'une énergie potentielle ou est conservative si $\mathcal{T}_{1\to 2}$ ne dépend pas du chemin suivi entre l'état initial et l'état final dans l'espace de configuration.

On montre alors qu'il existe une fonction Ep, appelée énergie potentielle, fonction uniquement des paramètres $(q_1(t), \ldots, q_n(t))$ telle que :

$$\mathcal{T}_{1\to2} = -\Delta Ep = Ep((q_1(t_1), \dots, q_n(t_1))) - Ep((q_1(t_2), \dots, q_n(t_2)))) \text{ ou } \delta \mathcal{T} = -dEp$$

5.6 Théorèmes de l'énergie / puissance mécanique :

Notations : On note $Ep = Ep_{int} + Ep_{ext}$ l'énergie potentielle totale et $E_m = Ec + Ep$ l'énergie mécanique.

Théorème de la puissance mécanique :

$$\mathcal{P}_m = \frac{dEm}{dt} = \mathcal{P}_{\text{ext, non conservative}} + \mathcal{P}_{\text{int, non conservative}}$$

Théorème de l'énergie mécanique mécanique :

 $\Delta Em = \mathcal{T}_{\text{ext, non conservative}} + \mathcal{T}_{\text{int, non conservative}}$

Cas particulier d'un seul solide :

$$\mathcal{P}_m = \frac{dEm}{dt} = \mathcal{P}_{\text{ext, non conservative}} \qquad \Delta Em = \mathcal{T}_{\text{ext, non conservative}}$$

5.7 Système conservatif :

Définition : Σ est un système conservatif si son énergie mécanique est constante au cours du temps. C'est le cas si on ne peut pas trouver d'action intérieure ou extérieure non conservative qui travaille.

Si un système est isolé, il ne subit pas d'actions extérieures. Cependant, il n'est pas forcément conservatif (à cause d'éventuelle actions intérieures non conservatives).

Intéret : $Em = \underbrace{Ec}_{\text{lien avec les vitesses}} + \underbrace{Ep}_{\text{lien avec la configuration de }\Sigma} = \text{constante.}$

Pour les système à 1 degré de liberté conservatif, l'équation Em = constante est une intégrale première du mouvement (car équation différentiel avec les paramètres et les dérivées premières seulement).

On retrouve l'équation du second ordre en écrivant $\frac{dEm}{dt} = 0$

5.8 Cas des référentiels non galiléens :

On rajoute dans les bilans de puissances et de travaux ceux des forces d'inertie.

Or l'action de la force de Coriolis ne travaille pas. Il ne reste que les forces d'inertie d'entrainement.

Dans deux cas particuliers, cette action est même conservative :

- 1. \mathscr{R}' est en rotation rectiligne uniformément accélérée par rapport à \mathscr{R} galiléen;
- 2. \mathscr{R}' est en rotation uniforme par rapport à \mathscr{R} galiléen.

Deuxième partie Electronique

Analyse spectrale

6.1 Décomposition en série de Fourier

Théorème : Soit *s* un signal périodique, de pulsation ω_1 , de prédiode $T = \frac{2\pi}{\omega_1}$ et de fréquence $f = \frac{\omega_1}{2\pi}$.

Il existe des nombrs $(a_n)_{n \ge 0}$ et $(b_n)_{n \ge 1}$ tels que pour tout $t, s(t) = a_0 + \sum_{n=1}^{+\infty} [a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t)]$. C'est la décomposition en série de Fourier de s. Les (a_n) et (b_n) sont les coefficients de Fourier de s.

Vocabulaire et expression des coefficients : $a_0 = \frac{1}{T} \int_{t_0}^{t_0+T} s(t) dt$ où t_0 quelconque. Pour $n \ge 1$, $a_n = \frac{2}{T} \int_{t_0}^{t_0+T} s(t) \cos(n\omega_1 t) dt$ et $b_n = \frac{2}{T} \int_{t_0}^{t_0+T} s(t) \sin(n\omega_1 t) dt$. a_0 est la valeur moyenne du signal $s : a_0 = \langle s(t) \rangle$. C'est la composante continue de s. $a_1 \cos(\omega_1 t) + b_1 \sin(\omega_1 t)$ a même pulsation que s, on l'appelle composante fondamentale de s. $a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t)$ a pour pulsation $n\omega_1$. C'est le n-ième harmonique de la décomposition en série de Fourier.

Forme alternative : La décomposition avec $(a_n), (b_n)$ est une écritre en cosinus, sinus.

Écrivons cette décomposition en amplitude / phase. $s(t) = c_0 + \sum_{n=1}^{+\infty} c_n \cos(n\omega_1 t + \varphi_n)$. $c_0 = a_0, \forall n \ge 1, c_n \ge 0, c_n = \sqrt{a_n^2 + b_n^2}$ et $\tan \varphi_n = -\frac{b_n}{a_n}$.

Propriétés des coefficients :

- Si *s* paire, alors $(b_n)_{n \ge 1} = 0$.
- Si s impaire, alors $(a_n)_{n \ge 0} = 0$.

• Si *s* possède la symétrie de glissement i.e. $s\left(t+\frac{T}{2}\right) = -s(t)$, alors $(a_{2n})_{n \ge 0}$ et $(b_{2n})_{n \ge 1}$ sont nuls. Il ne reste que les coefficients d'indices impaires.

• $\lim_{n \to +\infty} a_n = 0$ et $\lim_{n \to +\infty} b_n = 0$.

 $\begin{aligned} \text{Lien avec la valeur efficace}: \quad s_{\text{eff}}^2 &= \frac{1}{T} \int_{t_0}^{t_0+T} s^2(t) dt = \sqrt{\langle s^2 \rangle}. \\ \text{Pour un signal sinusoïdale, on retrouvera } s_{\text{eff}} &= \frac{S_m}{\sqrt{2}}. \\ \text{Théorème de Parseval}: \frac{1}{T} \int_0^T s^2(t) dt &= a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(a_n^2 + b_n^2 \right) = c_0^2 + \frac{1}{2} \sum_{n=0}^{+\infty} c_n^2. \\ s_{\text{eff}} &= \sqrt{a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(a_n^2 + b_n^2 \right)} = \sqrt{c_0^2 + \frac{1}{2} \sum_{n=0}^{+\infty} c_n^2}. \end{aligned}$

6.2 Spectre d'un signal périodique

Idée : s peut être représenté soit temporellement soit dans le domaine des fréquences. Représentation spectrale : graphes donnant

- (a_n, b_n) en fonction de la fréquence
- ou (c_n, φ_n) en fonction de la fréquence.

Filtrage par les circuits linéaires

7.1 Rappels

7.1.1 Fonction de transfert

Définition

Si le circuit est linéaire, alors le lien entre s(t) et e(t) est du type : $a_m \frac{d^m s}{dt^m} + \ldots + a_1 \frac{ds}{dt} + a_0 s = b_n \frac{d^n e}{dt^n} + \ldots + b_1 \frac{de}{dt} + b_0 e$. Pour des raisons de causalité, $m \ge n$. On se place en régime sinusoïdale forcé et on utilisera la notation complexe : $s(t) = S_m \cos(\omega t + \varphi) \rightarrow \underline{s}(t) = \underline{S_m} e^{j\omega t} = S_m e^{j(\omega t + \varphi)}$. Comme $\frac{d^k s}{dt^k} = (j\omega)^k$, $\underline{e}(t)$ et $\underline{s}(t)$ vérifient alors : $[a_m(j\omega)^m + \ldots + a_1j\omega + a_0] s = [b_n(j\omega)^n + \ldots + b_1j\omega + b_0] e$. On pose alors $\underline{H}(j\omega) = \frac{\underline{s}}{\underline{e}} = \frac{b_n(j\omega)^n + \ldots + b_1j\omega + b_0}{a_m(j\omega)^m + \ldots + a_1j\omega + a_0}$. C'est une fraction rationnelle en $j\omega$. On définit le gain réel de la fonction de transfert $G(\omega) = |\underline{H}(j\omega)|$ et la phase de la fonction de transfert $\varphi(\omega) = \arg(\underline{H}(j\omega))$.

Utilisation en régime harmonique

C'est-à-dire que e(t) est purement sinusoïdal : $e(t) = E_m \cos(\omega t + \varphi_e)$ et alors s(t) l'est aussi si on utilise un circuit linéaire : $e(t) = S_m \cos(\omega t + \varphi_s)$.

 $\frac{\underline{s} = \underline{H}(j\omega)\underline{e}}{S_m = G(\omega)E_m}$ $\varphi_s = \varphi(\omega) + \varphi_e$

7.1.2Diagramme de Bode

Définition

Un diagramme de Bode comporte deux graphes : la courbe de réponse en gain et la courbe de réponse en phase.

On choisit une pulsation de référence $\omega_{\rm ref}$.

La courbe de réponse en gain est le graphe du grain réel exprimé en décibels en fonction de la variable $X = \log\left(\frac{\omega}{\omega_{\text{ref}}}\right)$. $G_{dB} = 20 \log (G(\omega))$ (... petit doute). La courbe de réponse en phase est le graphe est le graphe donnant la phase de la fonction de

transfert en fonction de la variable $X = \log\left(\frac{\omega}{\omega_{\text{ref}}}\right)$.

Superposition

- $\begin{array}{l} \mathrm{Si} \ \underline{H} = \underline{H_1} \times \underline{H_2} : \\ \bullet \ G_{dB}(\omega) = 20 \log(G_1) + 20 \log(G_2) ; \\ \bullet \ \mathrm{arg}(\underline{H}) = \mathrm{arg}(\underline{H_1}) + \mathrm{arg}(\underline{H_2}) = \varphi_1 + \varphi_2. \end{array}$

Calcul de la sortie en régime périodique non harmo-7.2nique

Idée : on prend une entrée périodique e(t) et un circuit linéaire. Que vaut la sortie? On utilise le théorème de superposition et la décomposition en série de Fourier. On calcule la réponse du circuit à chaque composante de la décomposition en série de Fourier de e(t).

C'est « facile » car chaque composante est sinusoïdale. On peut utiliser \underline{H} du circuit. Par superposition, s(t) sera la somme de toutes les ces réponses individuelles.

$$s(t) = G(0)a_0\cos(\varphi(0)) + \sum_{n=1}^{+\infty} G(n\omega_1) \left[a_n\cos\left(n\omega_1t + \varphi\left(n\omega_1\right)\right) + b_n\sin\left(n\omega_1t + \varphi\left(n\omega_1\right)\right)\right]$$

$$s(t) = G(0)c_0\cos(\varphi(0)) + \sum_{n=1}^{+\infty} G(n\omega_1)c_n\cos(n\omega_1 t + \varphi_n + \varphi(n\omega_1))$$

Passe bande passif d'ordre 2 7.3

7.3.1Circuit :

7.3.2 Prévision du comportement

On utilise les composants équivalent lorsque $\omega \to 0$ et $\omega \to +\infty$.

7.3.3 Calcul de la fonction de transfert :

$$\underline{H} = \frac{\underline{s}}{\underline{e}} = \frac{1}{1 + \frac{j}{R}(L\omega - \frac{1}{C\omega})} \text{ de la forme } \frac{H_0}{1 + jQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \text{ avec } H_0 = 1, \ \omega_0 = \frac{1}{\sqrt{LC}}, \text{ et } Q = \frac{1}{RC\omega_0}.$$

7.3.4 Tracé du diagramme de Bode asymptotique

Aux basses fréquences, on a une asymptote oblique de pente +20dB/décade passant par le point $(0, -20 \log Q)$.

Aux hautes fréquences, on a une asymptote oblique de pente -20dB/décade passant par le point $(0, -20 \log Q)$.

Phase : $\begin{cases} x \to 0^+ : \varphi \to \frac{\pi}{2} \\ x \to +\infty : \varphi \to -\frac{\pi}{2} \end{cases}$

7.3.5 Calcul de la largeur de la bande passante

Les pulsations de coupures sont telles que $G(\omega_C) = \frac{G_{\text{max}}}{\sqrt{2}}$.

$$x_c = \frac{\pm \frac{1}{Q} + \sqrt{4 + \frac{1}{Q^2}}}{2}$$

La largeur réduite de bande passante $\Delta x = x_{c_2} - x_{c_1} = \frac{1}{Q}$

7.4 Passe-bas passif d'ordre 2

 $\stackrel{=}{=} \qquad \text{monté à vide.}$ Les prévisions du comportement montre qu'a priori, on a bien un filtre passe bas. Fonction de transfert : $\underline{H} = \frac{1}{1 + jRC\omega - LC\omega^2} = \frac{1}{1 + \frac{j}{O}x - x^2}$ avec $\omega_0^2 = \frac{1}{LC}$, $x = \frac{\omega}{\omega_0}$,

$$Q = \frac{L\omega_0}{R} = \frac{1}{RC\omega_0}.$$

Diagramme de Bode : Aux basses fréquences, asymptote horizontale à 0dB.

Aux hautes fréquences, asymptote oblique qui passe par l'origine et de pente -40 dB/décade. Phase : $\begin{cases} x \to 0^+ : \varphi \to 0 \\ x \to +\infty : \varphi \to -\pi \end{cases}$

Autres filtres passifs d'ordre 2 7.5

Filtres actifs et filtres passifs 7.6

En général, le circuit est utilisé sur une charge. La fonction de transfert d'un filtre passif dépend de son utilisation. La solution passe en général par l'utilisation d'un filtre actif.

Comportement intégrateur d'un circuit 7.7

7.7.1Intégrateur idéal

Fonction de tranfert : $\underline{H} = \frac{\omega_0}{j\omega}$. Diagramme de Bode : droite de pente -20dB/décade passant par l'origine : -20X avec X = $\log\left(\frac{\omega}{\omega_0}\right).$ (ω_0) Un système réel ne peut pas avoir un gain infini aux basses fréquences, c'est un cas idéal.

7.7.2Comportement d'un circuit intégrateur

Un signal périodique e de pulsation telle que toutes ses composantes « voient » dans la courbe de réponse en gain une pente de -20dB/décade est tout simplement intégré par le circuit. On dit que le circuit a un comportement intégrateur vis-à-vis de e(t).

Comportement dérivateur d'un circuit : 7.8

7.8.1Dérivateur idéal

Fonction de transfert : $\underline{H} = \frac{j\omega}{\omega_0}$. Diagramme de Bode : droite de pente +20dB/décade passant par l'origine : +20X avec X = $\log\left(\frac{\omega}{\omega_0}\right)$

Un système réel ne peut pas avoir un gain infini aux hautes fréquences, c'est un cas idéal.
7.8.2 Comportement d'un circuit dérivateur

Un signal périodique e de pulsation telle que toutes ses composantes « voient » dans la courbe de réponse en gain une pente de +20dB/décade est tout simplement intégré par le circuit. On dit que le circuit a un comportement dérivateur vis-à-vis de e(t).

Remarque : cela pose problème pour les signaux ayant un nombre infini de composantes.

Compléments - Rappels

8.1 Stabilité des circuits linéaires du 1^{er} et du 2nd ordre

Stabilité : circuit stable si aucune des grandeurs électriques du circuit ne peut prendre des valeurs infinies quelle que soit l'excitation e(t). Tous les circuits passifs sont stables.

8.1.1 $1^{\rm er}$ ordre

Soit g(t) une grandeur electrique.

 $\frac{dg}{dt} + \frac{1}{\tau}g = \dots e(t)$: si le temps caractéristique du circuit τ est positif, il y a stabilité, sinon il y a instabilité.

8.1.2 2^{nd} ordre

$$a\frac{d^2g}{dt^2} + b\frac{dg}{dt} + cg = \dots e(t)$$
: stabilité si a, b et c sont de même signe

8.2 Équation différentielle et paramètres du circuit

Pour obtenir l'équation que vérifie une grandeur du circuit électrique d'un circuit, il faut penser à utilise le régime sinusoïdale forcée et la notation complexe.

Pour un circuit du 2nd ordre, pour déterminer ω_0 et Q il faut passer par l'identification avec la forme canonique : $\frac{d^2g}{dt^2} + \frac{\omega_0}{Q}\frac{dg}{dt} + {\omega_0}^2g = \dots e(t).$

Exemple : filtre de Wien :

Difficile sans passer par les complexes.

Troisième partie Chimie

Potentiel chimique

9.1 Fonction enthalpie libre

9.1.1 Définition

Soit Σ un système fermé dans un état d'équilibre thermodynamique : T, P, u, H et S sont parfaitement définies. On définit l'enthalpie libre par :

G = H - TS fonction de Gibbs

C'est une fonction d'état extensive et d'unité le joule J.

9.1.2 Propriétés

Bilan

Soit une évolution monobare ($P_{\text{ext}} = P_0$ constante) et le système est à l'équilibre mécanique à l'état final et l'état initial et monotherme ($T_{\text{ext}} = T_0$) du système Σ .

$$\Delta G = \mathcal{W}' - T_0 S^c$$

avec

- \mathcal{W}' les travaux des forces autres que les forces de pressions;
- T_0 la température extérieure;
- S^c entropie créée telle que $\Delta S = S^e + S^c = \frac{Q}{T_0} + S^c$

Interprétation

 $T_0 S^c = \mathcal{W}' - \Delta G \ge 0. \ \Delta G \le \mathcal{W}'.$

Si on veut récupèrer du travail utile : $\mathcal{W}' < 0$.

Le travail utile récupérable lors d'une transformation monotherme monobare est toujours inférieur à la diminution de l'enthalpie libre du système.

Cas particulier : $\mathcal{W}' = 0$ donc $\Delta G \leq 0$.

Cas des évolutions spontanées : $\Delta G < 0$.

Le système évolue donc tant que G peut diminuer. Quand G est minimal, on a atteind l'état d'équilibre final.

Suus forme différentielle : dG < 0.

9.1.3 Expression différentielle

Soit Σ un système de composition constante décrit par T et P.

$$dG = VdP - SdT$$

Par ailleurs, $dG = \left(\frac{\partial G}{\partial T}\right)_P + \left(\frac{\partial G}{\partial P}\right)_T$. Par identification : $V = \left(\frac{\partial G}{\partial P}\right)_T$ et $-S = \left(\frac{\partial G}{\partial T}\right)_P$.

9.2 Notion de potentiel chimique

9.2.1 Système de composition variable

Soit Σ un système comportant n_i moles d'une espèce physico-chimique $i, i \in [\![1, N]\!]$. A priori, G est fonction de T, P et des n_i .

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,n_i} + \left(\frac{\partial G}{\partial P}\right)_{T,n_i} + \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_j \text{ avec } i \neq j} dn_i$$

Par définition, le potentiel chimique μ_i de la i^e espèce physico-chimique dans le système extérieur est :

$$\mu_i(T, P, n_1, \dots, n_N) = \left(\frac{\partial G}{\partial n_i}\right)_{T, P, n_j \text{ avec } i \neq j}$$
$$dG = -SdT + VdP + \sum_{i=1}^N \mu_i dn_i$$
$$G = \sum_{i=1}^N n_i \mu_i$$

9.2.2 Équilibre d'un corps pur sous deux phases

Soit un coprs pur présent sous deux phases 1 et 2. On note n_1 et n_2 les quantités de matières correspondantes. Exemple : $H_2O_{(l)} \leftrightarrows H_2O_{(vap)}$. Soit une évolution spontanée du système. n_1 varie de dn_1 et n_2 de dn_2 .

G varie de $dG = -SdT + VdP + \mu_1 dn_1 + \mu_2 dn_2$.

Hypothèses : la température T est constante, la pression P est constante et il n'y a pas de travail mécanique utile.

$$dG = (\mu_1 - \mu_2)dn_1 < 0$$

Ceci montre que la matière va spontanément des zones de fort potentiel vers les zones de faible potentiel chimique.

Å l'équilibre, dG = 0 donc

$$\mu_1 = \mu_2$$

Conclusion : une même espèce chimique doit avoir le même potentiel chimique dans toutes les phases d'un système en équilibre thermodynamique.

Expressions des potentiels chimiques 9.3

9.3.1Rappels sur l'état standard

On définit la pression standard par $P^0 = 0$ bar $= 10^5$ Pa.

L'état standard d'un constituant physico-chimisue est un état particulier (parfois hypothétique) de ce constituant à la pression P^0 .

Attention : la température n'est a priori pas fixé : il n'y a pas de température standard.

9.3.2 Corps purs

Remarque préliminaire

Corps purs sous une seule phase : $G = \sum_{i=1}^{N} \mu_i n_i$ avec N = 1 d'où $\mu = \frac{G}{n}$. μ est l'enthalpie

libre molaire.

Cas du gaz parfait

L'état du gaz parfait pur à la température T est ce gaz parfait, à la température T, sous l pression P^0 . On note $\mu^0(T)$ le potentiel chimique du gaz parfait à la température T dans son état standard.

$$\mu(T, P) = \mu^{0}(T) + RL \ln\left(\frac{P}{P^{0}}\right)$$

On pose $a = \frac{P}{P_0}$ pour le gaz parfait pur. C'est son activité.

Phases condensées (solide ou liquide)

$$\left(\frac{\partial\mu}{\partial P}\right)_T$$

L'état standard pour un corps pur seul, dans le même état physique, à la température T, sous la pression P^0 . Cela done $\mu^0(T)$ le potentiel chimique standard.

$$\mu(T) = \mu^0(T)$$

On pose a = 1 pour une phase condensée pur.

9.3.3 Mélanges idéaux

Mélanges de gaz pafaits

Soit un mélange de gaz parfaits idéal (mélange idéal). Soit *i* le i^e gaz parfait de quantité de matière n_i . Sa fraction molaire est $x_i = \frac{n_i}{\sum\limits_{i=1}^{N} n_i} = \frac{n_i}{n_{\text{total}}}$. Sa pression partielle est $P_i = x_i P$ avec

P la pression totale.

Physiquement, pour le i^e gaz parfait, tout se passe comme s'il était seul à la température T et à la pression P_i . On associe à ce gaz l'état standard correspondant au gaz seul à la température T et la pression P.

$$\mu_i(T, P) = \mu_i^0(T) + RL \ln\left(\frac{P_i}{P^0}\right)$$

On pose $a = \frac{P_i}{P^0}$.

Mélange idéal des phases condensées

Soit un mélanges de n_i moles de l'espèce $i. x_i = \frac{n_i}{\sum_i n_i}.$

$$\mu_i = \mu_i^0(T) + RT \ln(x_i)$$

L'état standard est l'espèce *i* pure, sous la même phase condensée à la température *T* et sous la pression *P*. On pose $a = x_i$.

9.3.4 Cas des solutions acqueuses

Une solution est un mélange en phase liquide avec une espèce ultra majoritaire (le solvant) devant les autres espèces (les solutés).

Solvant

On ignore la présence des soluté.

$$\mu_{\text{solvant}} = \mu_{\text{solvant}}^0(T)$$

On pose $a_{\text{solvant}} = 1$.

L'état standard du solvant est le solvant pur, liquide à la température T et sous la pression P^0 .

Soluté

Pour le i^e soluté, on admet $a_{\text{soluté}} = \frac{c_i}{c^0}$ où c_i est la concentration molaire exprimée en $\text{mol}\cdot\text{L}^{-1}$. et $c^0 = 1 \text{ mol}\cdot\text{L}^{-1}$.

$$\mu_{i\text{solut\acute{e}}} = \mu_{i,c,\infty}^0(T) + RT \ln\left(\frac{c_i}{c^0}\right)$$

 $\mu_{i,c,\infty}^0(T)$ est le potentiel chimique du le soluté dans son état standard i.e. état hypothétique du soluté, à la concentration $c^0 = 1 \text{ mol}\cdot\text{L}^{-1}$, en extrapolant son comportement à celui d'une solution infiniment diluée. On pose $a = \frac{C_i}{c^0}$.

9.4 Compléments, relecture mathématique

9.4.1 Identité d'Euler

Soit Z une grandeur extensive.

$$Z(T, P, n_1, \dots, n_N) = \sum_{i=1}^N n_i \left(\frac{\partial Z}{\partial n_i}\right)_{T, P, n_j \text{ avec } i \neq j}$$

Exemples :

•
$$Z = V : \left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_j \text{ avec } i \neq j}$$
 est le volume molaire partiel et on le note $\overline{V_{m,i}}$.

•
$$Z = G : G(T, P, n_1, \dots, n_N) = \sum_{i=1}^n n_i \left(\frac{\partial G}{\partial n_i}\right)_{T, P, n_j \text{ avec } i \neq j} = \sum_{i=1}^N n_i \overline{G_{m,i}} = \sum_{n=1}^N n_i \mu_i. \ \mu_i = \overline{G_{m,i}}$$
 le potentiel chimique est l'enthalpie libre molaire partielle

 $G_{m,i}$ le potentiel chimique est l'enthalpie libre molaire partielle.

Théorème de Schwartz 9.4.2

Énoncé

Soit $f(x_1, \ldots, x_N)$ une fonction à N variables. Sous des hyothèses de dérivations vérfiées en physique et en chimie, on a :

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Application : dépendance de μ avec T et p

$$\frac{\partial}{\partial T}(\mu_i) = \left(\frac{\partial}{\partial n_i}\right)(-S)_{T,P,n_j \text{ avec } i \neq j} = -\overline{S_{m,i}}$$

Relation de Gibbs-Helmholtz 9.4.3

$$\frac{\partial}{\partial T} \left(\frac{G}{T} \right)_{P,n_i} = -\frac{H}{T^2}$$

Grandeurs de réaction

10.1 Définitions

10.1.1 Variables de de Donder

Soit S un système fermé de composition varaible selon :

$$\nu_1 A_1 + \ldots + \nu_m A_m = \nu_{m+1} A_{m+1} + \ldots + \nu_n A_N$$

On prend $\nu_i < 0$ pour les réactifs i.e. pour $\forall i \in [\![1,m]\!]$ et $\nu_i > 0$ pour les produits i.e. $\forall i \in [\![m+1,N]\!]$.

$$\sum_{i=1}^{N} \nu_i A_i = 0$$

Soit Z une grandeur extensive associé au système : $Z(T, P, n_1, \ldots, n_N)$: travail avec les variables de Gibbs.

On introduit également l'avancement de la réaction ξ . On a alors $Z(T, P, \xi)$: travail avec les variables de de Donder.

 $\text{Lien}: n_i(t) = n_i(0) + \nu_i \xi, \, dn_i = \nu_i d\xi. \text{ Remarque}: \xi_{\text{initial}} = \xi_i = 0. \, \xi_{\text{final}} = \xi_f \begin{cases} > 0 : \text{ sens direct} \\ < 0 : \text{ sens indirect} \end{cases}.$

10.1.2 Opérateur de Lewis

Soit Z une grandeur extensive. Évolution à T et P constantes.

$$dZ = \left(\frac{\partial Z}{\partial n_i}\right)_{T,P,n_j \text{ avec } i \neq j} dn_i = \sum_{i=1}^N dn_i \overline{Z_{m,i}} = \left(\sum_{i=1}^N \nu_i \overline{Z_{m,i}}\right) d\xi$$

On pose Δ_r l'opérateur de Lewis, défini par son action sur Z par :

$$\Delta_r Z = \sum_{i=1}^N \nu_i \overline{Z_{m,i}}$$
$$\Delta_r Z = \left(\frac{\partial Z}{\partial \xi}\right)$$

10.1.3 Interprétation

 $\Delta_r Z$ est une grandeur intensive d'unité celle de Z par mole (d'avancement).

10.1.4 Grandeur standrad de réaction

À la réaction $\sum_{i=1}^{N} \nu_i A_i = 0$, on associe une réaction dite standard dans laquelle tous les réactifs et tous les produits sont pris isolément dans leur état standard, à la température T et sous la pression P^0 . Pour Z, on associe la grandeur standard de réaction comme étant la grandeur de réaction de la

réaction standard. On le note $\Delta_r Z^0$. On a donc $\Delta_r Z^0 = \sum_{i=1}^N \overline{Z_{m,i}} = \sum_{i=1}^N Z_{m,i}$ et dépend a priori de la température.

$$\Delta Z^0 = Z_f^0 - Z_i^0 = \Delta_r Z^0 \times d\delta$$

10.2 Application à l'enthalpie

10.2.1 Enthalpie (standard) de réaction

$$\Delta_r H = \sum_{i=1}^N \nu_i \overline{H_{m,i}} \qquad \Delta_r H^0 = \sum_{i=1}^N \nu_i H^0_{m,i}$$

10.2.2 Intérêt

Il s'agit d'une réaction monotherme monobare donc

$$Q = \xi_f \times \Delta_r H^0$$

Si $\Delta_r H^0 > 0$, la réaction est dite endothermique. Si $\Delta_r H^0 < 0$, la réaction est dite exothermique. Calcul de température de flamme.

10.2.3 Enthalpie molaire standard de formaton, loi de Hess

L'enthalpie molaire standard de formation d'une espèce est l'enthalpie standard de réaction de formation d'une mole de cette espèce à partir des corps simples pris dans leurs états standards de référence.

Conséquence : l'enthalpie molaire standard de formation d'un corps seul dans son état de référence est nulle.

$$\Delta_r H^0(T) = \sum_{i=1}^N \nu_i \Delta f_i^0$$
: loi de Hess

10.2.4 Loi de Kirchhoff

$$\frac{d}{dT}(\Delta_r H^0) = \Delta_r C p^0 = \sum_{i=1}^N \nu_i C_{m,i}^0$$

Cette relation suppose qu'aucune espèce ne change d'état physique. Dans le cas contraire, il faut rajouter les termes correspondants aux enthalpies molaires de changement d'état :

$$\Delta_r H^0(T) = \Delta_r H^0(298) + \int_{298}^T \Delta_r C p^0 dT + \sum_{\substack{i=1 \text{ et } \\ i \in \text{changement d'état}}}^N \nu_i L_{m,i}$$

10.3 Application à l'entropie

10.3.1 Entropie (standard) de réaction

$$\Delta_r S = \sum_{i=1}^N \nu_i \overline{S_{m,i}} \qquad \Delta_r S^0 = \sum_{i=1}^N \nu_i S^0_{m,i}$$

10.3.2 Principe de Nernst

L'entropie molaire de tout corps pur cristallisé tends vers $0J \cdot K^{-1} \cdot mol^{-1}$ lorsque T tend vers 0K.

Conséquence : contrairement à l'énergie interne u, à l'enthalpie H et à l'enthalpie libre G, on peut définir une entropie molaire absolue $S_{m,i}^0$. D'où

$$\Delta_r S^0 = \sum_{i=1}^N \nu_i S^0_{m,i}$$

10.3.3 Loi de Kirchhoff

$$\frac{d}{dT}(\Delta_r S^0) = \frac{\Delta_r C p^0}{T}$$

Cette relation suppose qu'aucune espèce ne change d'état physique. Dans le cas contraire, il faut rajouter les termes correspondants aux enthalpies molaires de changement d'état. Or, $S_{m,1\to2}(T) = \frac{H_{m,1\to2}(T)}{T} = \frac{L_{m,1\to2}}{T}$ donc :

$$\Delta_r S^0(T) = \Delta_r S^0(298) + \int_{298}^T \frac{\Delta_r C p^0}{T} dT + \sum_{\substack{i=1 \text{ et } \\ i \in \text{changement d'état}}}^N \nu_i \frac{L_{m,i}}{T}$$

10.3.4 Ordre de grandeurs

$$S^0_{m,\text{solide}} < S^0_{m,\text{liquide}} \ll S^0_{m,\text{gaz}} \approx 100 \text{ à } 200J \cdot K^{-1} \cdot mol^{-1}$$

10.4 Application à l'enthalpie libre

10.4.1 Enthalpie libre (standard) de réaction

$$\Delta_r G = \sum_{i=1}^N \nu_i \overline{G_{m,i}} \qquad \Delta_r G^0 = \sum_{i=1}^N \nu_i G^0_{m,i}$$

10.4.2 Calcul G = H - TS

$$\Delta_r G^0(T) = \Delta_r H^0(T) - T \Delta_r S^0(T)$$

Loi de Hess

$$\Delta_r G^0 = \sum_{i=1}^N \nu_i \Delta_f G_i^0 \text{ avec } \Delta_f G_i^0 \text{ l'enthalpie libre molaire standard de réaction.}$$

Loi de Kirchhoff

$$\frac{d}{dT}(\Delta_r G^0) = -\Delta_r S^0$$

Remarques :

- 1. en général, $\Delta_r S^0(T)$ supposé constante donc l'intégrale est facile à calculer;
- 2. G est continue aux changements d'états donc pas besoin de termes supplémentaires.

Relation de Gibbs-Helmholtz

$$\frac{d}{dT}\left(\frac{\Delta_r G^0}{T}\right) = -\frac{\Delta_r H^0}{T^2}$$

L'équilibre chimique

11.1 Affinité chimique

11.1.1 Définitions

Soit un système de composition variable caractérisé soit par T, P, n_1, \ldots, n_N soit par T, P, ξ évoluant suivant l'équation suivente : $\sum_{i=1}^{N} \nu_i A_i = 0.$

$$\nu_1 A_1 + \ldots + \nu_m A_m \underset{\text{indirect}(2)}{\overset{\text{direct}(1)}{\rightleftharpoons}} \nu_{m+1} A_{p+1} + \ldots + \nu_N A_n$$

 ξ augmente i.e. $d\xi > 0$: évolution dans le sens (1). ξ diminue i.e. $d\xi < 0$: évolution dans le sens (2). On appelle affinité chimique du système :

$$\mathcal{A} = -\Delta_r G = -\left(\frac{\partial G}{\partial \xi}\right)_{T,P}$$

11.1.2 Évolution du système

Si $\mathcal{A} = 0$, $d\xi = 0$ donc système à l'équilibre. Si $\mathcal{A} > 0$, $d\xi > 0$ donc évolution dans le sens (1). Si $\mathcal{A} < 0$, $d\xi < 0$ donc évolution dans le sens (2).

11.2 Quotient de réaction - Constante d'équilibre

11.2.1 Définition

Pour le système, on définit le quotient réactionnel comme suit :

$$Q = \prod_{i=1}^{N} a_i^{\nu_i}$$

D'où :

$$\mathcal{A} = \mathcal{A}^0(T) - RT\ln(Q)$$

11.2.2 Constante d'équilibre

La constante d'équilibre K du système est la valeur particulière de Q à l'équilibre : $Q_{eq} = Q$. On alors :

$$\Delta_r G^0 + RT \ln(K) = 0 \qquad K(T) = e^{-\frac{\Delta_r G^0}{RT}}$$

11.2.3 Évolution

Si Q < K, évolution dans le sens (1). Si Q > K, évolution dans le sens (2). Si Q = K, système à l'équilibre.

$$K(T) = \prod_{i=1}^{N} a_{i,eq}^{\nu_i}$$
: loi d'action de masse

11.2.4 Température d'inversion

On appelle température d'inversion T_i de l'équilibre la température (si elle existe) telle que $\Delta_r G^0(T_i) = 0$ i.e. $K(T_i) = 1$.

11.2.5 Loi de Van't Hoff

$$\frac{d}{dT}\left(\ln K\right) = \frac{\Delta_r H^0}{RT^2}$$

11.3 Lien avec la création d'entropie

Relation quantitative de création d'entropie (lorsque ξ varie de $d\xi$) :

$$\delta S^c = \frac{\mathcal{A}d\xi}{T}$$

11.4 Application

11.4.1 Système gazeux

Soit un système composé uniquement de gaz modélisés par des gaz parfaits. $a_i = \frac{P_i}{P^0} = \frac{x_i P}{P^0}$

$$K(T) = \left(\frac{P}{P^0}\right)^{\sum\limits_{i=1}^{N} \nu_i} \prod\limits_{i=1}^{N} x_{i,eq}^{\nu_i}$$

11.4.2 Solutions acqueuses

Soit un système composé uniquement de solutés dans un sovant.

$$K(T) = \prod_{i \in \text{ solut}\acute{e}} c_{i,eq}^{\nu_i}$$

11.4.3 Équilibre hétérogène

Système comportant des phases condensées ou une solution acqueuse et des gaz. Implicitement, on considère que les espèces condendées sont seules dans leurs phases. D'où

$$K(T) = \prod_{i \in \text{gaz}} \left(\frac{P_i}{P^0}\right)^{\nu_i} \prod_{j \in \text{ solut}\acute{e}} x_j^{\nu_j}$$

Ou encore s'il y a équilibre ce qui suppose la présence de toutes les phases :

$$K(T) = \prod_{i \in \text{gaz}} \left(\frac{P_i}{P^0}\right)^{\nu_i} \prod_{j \in \text{ solut}\acute{e}} \left(\frac{c_i}{c^0}\right)^{\nu_j}$$

Déplacement et rupture d'équilibre

12.1 Position du problème

Soit un système fermé évoluant suivant $\sum_{i} \nu_i A_i = 0.$

On suppose qu'un équilibre chimique est atteint.

On modifie un paramètre : la température T, la pression P, un composant actif n_i ou un composant inerte n.

Question : le système évolue-t-il vers un nouvel état d'équilibre ?

Si non, il y a rupture d'équilibre (en général dû à la disparition d'une espèce solide).

Si oui, il y a donc un nouvel équilibre : le système a-t-il évolué dans le sens 1 ou 2?

12.2 Variance

12.2.1 Définition

On appelle facteur d'équilibre tout paramètres intensifs du système tel que sa variation à partir d'une situation d'équilibre entraine une évolution du système (exemple : T, P, fractions molaire).

Variance : c'est le nombre de paramètres intensifs indépendants à connaître pour déterminer entièrement un état d'équilibre.

12.2.2 Calcul

$$v = X - Y$$

avec X le nombre total de paramètres intensifs et Y le nombre total de relation entre ces paramètres.

Hors-programme : pour vérifier le calcul : règle des phases : $v = c + 2 - \varphi$ avec c le nombre de constituant indépendant moins le nombre de relations entre ces constituants et φ le nombre de phase (un solide = une phase, un liquide = une phase, chaque gaz = une phase).

12.3 Méthode utilisée

Situation $\mathcal{A}_i = 0$. $Q = Q_{eq} = K^0(T)$. On modifie un paramètre :

• $\mathcal{A}_i \to \mathcal{A}'_i$;

- $Q \to Q'$
- $K^0(T) \to K'$.

Dans les cas simples, le signe de \mathcal{A}' ou la comparaison de Q' et K' se fait facilement (fonctions monotones). On en déduit le sens d'évolution. Dans les cas compliqués, on utilise une approche différentielle. $\mathcal{A}' = \mathcal{A}_i + d\mathcal{A}$ ou alors Q' = Q + dQ ou K' = K + dK.

On va établir pour des variations de la températures et la pression des rêgles simples générales : loi de modération de Le Chatelier i.e. le système réagit de manière à s'opposer à la variation qui lui a été imposée.

12.4 Évolution de la température isobare

Le sens endothermique est le sens dans le quel il faut écrire la réaction pour que son $\Delta_r H^0$ soit positif.

La température varie mais la pression et les n_i sont constants.

Loi de Le Chatelier : le système réagit à une élévation de température dans le sens endothermique de la réaction. C'est bien une modération : le système évolue dans le sens lui permettent d'absorber l'apport énergétique dû à l'augmentation de la température.

12.5 Modification de pression isotherme

La pression varie mais la température et les n_i sont constants.

Loi de Le Chatelier : le système évolue suite à une augmentation de pression dans le sens correspondant à une diminution du nombre de moles de gazeuses.

Il y a bien modération : le système cherche à faire redescendre la pression en consommant des moles gazeuses.

Diagramme binaire liquide vapeur

Introduction 13.1

13.1.1Cadre de l'étude

On s'interesse à un mélange de deux corps purs A_1 et A_2 chacun pouvant être soit à l'état liquide soit à l'état gazeux.

Il y a différents cas possibles :

- une phase gazeuse;
- une phase gazeuse avec une espèce et une phase liquide avec l'autre espèce;
- une phase liquide : A_1 et A_2 liquide, miscibilité totale ;
- deux phase liquide : A_1 et A_2 liquide, non miscibilité ;
- les deux derniers cas avec en plus une phase gazeuse.

13.1.2Notation

En quantité de matière :

- n_1 (respectivement n_2) la quantité de matière totale de A_1 (resp. de A_2);
- $n_0 = n_1 + n_2$ la quantité de matière totale;
- n₁^l (respectivement n₂^l) la quantité de matière de A₁ (resp. de A₂) en phase liquide;
 n^l = n₁^l + n₂^l la quantité de matière en phase liquide;
- n_1^v (respectivement n_2^v) la quantité de matière de A_1 (resp. de A_2) en phase gazeuse;
- $n^v = n_1^v + n_2^v$ la quantité de matière en phase gazeuse;

En fraction molaire :

- $x_1 = \frac{n_1}{n_0}$ (respectivement $x_2 = \frac{n_2}{n_0}$) la fraction molaire de A_1 (resp. de A_2);
- $x_1^l = \frac{n_1^l}{n^l}$ (respectivement $x_2^l = \frac{n_2^l}{n^l}$) la fraction molaire de A_1 (resp. de A_2) en phase
- $x_1^v = \frac{n_1^v}{n^v}$ (respectivement $n_2^v = \frac{n_2^v}{n^v}$) la molaire de A_1 (resp. de A_2) en phase gazeuse;

Parfois, on travaille en masse : variable m et w la masse et la fraction massique.

Principe de l'étude 13.1.3

On fixe soit la température soit la pression et on fait varier l'autre paramètre. Á T fixé, on a un diagramme isotherme; à P fixé, on a un diagramme isobare.

13.2 Cas de la miscibilité totale : cas idéal ou faible écart à l'idéalité

13.2.1 Diagramme isotherme

Construction

On obtient dans le cas idéal, ou d'un faible écart à l'idéalité un seul fuseau qui découpe le diagramme en trois domaines.

Le système est monovariant. Donc en particulier, il existe une relation entre P et x_2^l d'une part et entre P et x_2^v d'autre part.

La courbe d'ébullition est le graphe de $P(x_2^l)$. La courbe dde rosée est le graphe de $P(x_2^v)$.

Exploitation

Plus $P_{v \text{ sat}}$ est élevée, plus l'espèce est volatile.

Le diagramme permet de déterminer l'état physique du système. On représente le système par $M(x_2, P)$. Dans quel domaine se trouve-t-il?

13.2.2 Diagrammes isobares

Même procédé que pour les diagrammes isothermes : à partir des courbes d'analyses thermique. On obtinent également un seul fuseau mais inversé.

Le corps le plus volatile a la température d'ébullition la plus basse.

13.2.3 Règle des moments (chimiques)

But : passer des fractions molaires ou massiques au quantités de matières de A_1 et A_2 dans les différentes phases.

$$\frac{n^l}{n^v} = \frac{x_2^v - x_2}{x_2 - x_2^l} = \frac{\overline{GV}}{\overline{LG}}$$
$$n^l = n_0 \frac{GV}{LV}$$
$$n^v = n_0 \frac{GL}{LV}$$

Remarque : ces relations sont aussi valables pour les diagrammes isobares et pour les diagrammes massique. Elles le sont aussi pour les fuseaux « déformés » des parties suivantes.

13.3 Miscibilité totale, cas d'un fort écart à l'idéalité : l'azéotropie

Les courbes de rosée et d'ébullition présentent un extremum commun.

On utilise ces diagrammes de la même manière que les précendents.

Soit A le point qui correspond à l'extremum commun.

Un mélange qui a pour composition x_A est le mélange azéotrope (à une température fixée). Si on élève la pression pour le mélange azéotrope, lors de la liquéfaction, la composition du liquide est la même que celle de la vapeur. Le mélange se comporte comme un corps pur.

Pour le distinguer d'un corps pur, on refait la manipulation à une autre température sans changer la fraction molaire.

13.4 Cas de la non miscibilité : hétéroazéotropie

 A_1 et A_2 sont non miscibles.

Différents cas possibles (voir précédemment).

La variance du système est nulle donc tout est fixé.

Dans le diagrame isobare, on a point triple H. H est la seule situation avec deux liquides en présences de vapeur.

Quatrième partie Optique physique

Introduction à l'optique physique

14.1 Modèle scalaire de la lumière

14.1.1 Élements historiques

1678 : pour Huygens, la lumière est une onde. Pour Newton, c'est des corpuscules.

1801 : pour Young, la lumière est une onde : interférences. Aidé par Fresnel.

1864 : Maxwell étudie l'électromagnétisme. Ces recherches le mène à établir que la lumière est une onde electromagnétique.

1881 : Michelson et Morley montrent que la vitesse de la lumière est identique dans tous les référentiels. Contradiction avec la loi de composition des vitesses. Einstein établit la théorie de la relativité.

1905 : Einstein étudie l'effet photoélectrique qui suppose que la lumière est formée de corpuscule. La dualité de la lumière est établie, la dualité onde-corpuscule de la lumière. Ceci donne naissance à la mécanique quantique.

1924 : Louis Broglie établie que c'est une onde de matière.

14.1.2 Postulats

- La lumière est une vibration sclaire s(M,t) qui se propage le long des rayons lumineux (ceux de l'optique géométrique) à la vitesse $v = \frac{c}{n}$ dans un milieu d'indice optique n, c étant la vitesse de la lumière dans le vide.
- Si en M au temps t arrivent N vibrations lumineuses $s_i(M, t)$, la vibration résultante est $s(M, t) = \sum_{i=1}^{N} s_i(M, t)$

$$s(M,t) = \sum_{i=1}^{N} s_i(M,t)$$

14.1.3 Récepteurs lumineux

Un récepteur lumineux est caractérisé par son temps de réponse τ . 10^{-1} s pour l'oeil, 10^{-2} pour les capteurs CCD, 10^{-4} pour les émulsions photographiques et 10^{-6} pour les photodiodes. T est le temps caractéristique des variations de la lumière : $T = 10^{-15}$.

La lumière est une onde électromagnétique pour certaines fréquences auxquelles l'oeil est sensible.

Les récepteurs sont sensibles à la valeur moyenne de l'énergie reçu, moyennée sur le temps de réponse.

Éclairement 14.1.4

C'est la grandeur utile pour l'étude de l'optique physique. C'est la puissance moyenne reçu par le recepteur sur son temps de réponse τ noté $\mathcal{E}(M)$. $\mathcal{E}(M)$ est proportionnelle à $K \times \langle s^2(M,t) \rangle_t$. L'éclairement est une puissance surfacique : $[W \cdot m^{-2}]$.

Lumière monochromatique 14.2

14.2.1Définition

Une lumière monochromatique est décrite par $s(M,t) = \underbrace{A(M)}_{\text{amplitude}} \cos(\underbrace{\omega t + \varphi(M)}_{\text{phase}\varphi(M,t)})$. Caracté-

risation temporelle de la vibration :

- pulsation ω ; période $T = \frac{2\pi}{\omega}$;

• fréquence
$$f = \frac{\omega}{\pi} = \frac{\omega}{\omega}$$

• frequence $f = \frac{1}{T} = \frac{1}{2\pi}$. Caractérisation spatiale dans le vide de la vibration :

- longueur d'onde dans le vide qui est la distance parcourut par la lumière dans le vide pendant une période $\lambda_0 = cT = \frac{c}{f}$;
- nombre d'onde dans le vide $\sigma_0 = \frac{1}{\lambda_0}$
- vecteur d'onde dans le vide $\overrightarrow{k_0} = \frac{2\pi}{\lambda_0} \overrightarrow{u}$ avec \overrightarrow{u} vecteur unitaire tangent à la trajectoire du rayon lumineux.

 $k_0 = \|\overrightarrow{k_0}\| = \frac{2\pi}{\lambda_0}$ (par abus, k_0 est parfois nommé vecteur d'onde). Dans un mileu d'indice n, on a :

$$v = \frac{c}{n} \quad \lambda = vT = \frac{cT}{n} = \frac{\lambda_0}{n} \qquad \sigma = n\sigma_0 \qquad \overrightarrow{k} = \frac{2\pi}{\lambda} \overrightarrow{u} = n\overrightarrow{k_0}$$
$$k_0 = \frac{\omega}{c}$$

Remarque : lumière : $\lambda_0 \in [400, 800]$.

14.2.2**Représentation complexe**

s(M,t) monochromatique réel : $A(M)\cos(\omega t + \varphi(M))$ se voit associé sa représentation complexe $\underline{s}(M,t) = A(M)e^{j(\omega t + \varphi(M))}$. C'est l'amplitude temporelle complexe. $s(M,t) = \underline{A(M)e^{j\varphi(M)}}e^{j\omega t}$. C'est l'amplitude complexe. $\underline{s}(M,t) = \underline{a}(M)e^{j\omega t}$. On passe de $\underline{s(M, t)}$ à s(M, t) par s(M, t) = Re(s(M, t)) ou $s(M, t) = |\underline{a}(M)| \cos(\omega t + \arg(\underline{a}(M)))$.

14.2.3Expression de l'éclairement

 $\mathcal{E}(M) = K \langle s^2(M,t) \rangle_t = \frac{1}{2} K A^2(M)$ avec s monochromatique. Remarque : $\mathcal{E}(M) = \frac{1}{2}K\underline{s}(M,t)\underline{s}^{\star}(M,t).$

14.3 Retard de phase, chemin optique

14.3.1 Généralisation

On se place dans un milieu inhomogène.

On pose le chemin optique (MN) entre M et N, défini par $(MN) = \int_{M}^{N} n(P) dl$.

On a alors $\varphi(N) = \varphi(M) - \frac{2\pi}{\lambda_0}(MN).$

(MN) est une grandeur algébrique positive si N est au delà de M (dans le sens de propagation de la lumière).

$$\varphi(N) - \varphi(M) = -\frac{2\pi}{\lambda_0}(MN) :$$

- si $-\frac{2\pi}{\lambda_0}(MN) = 0[2\pi]$, alors M et N vibrent en phase. (MN) est multiple de la longueur d'onde dans le vide;
- si $-\frac{2\pi}{\lambda_0}(MN) = \pi[2\pi]$: opposition de phase. (MN) est un nombre impair de $\frac{\lambda_0}{2}$.

14.3.2 Cas particulier

Le chemin optique est dit purement géométrique. Dans certains cas particlier, il faut rajouter des termes (optiques).

• Cas de la réflexion vitreuse (réflexion sur un dioptre entre un milieu moins réfringent sur un milieu plus réfringent) ou sur un métal : il faut rajouter $\frac{\lambda_0}{2}$ au chemin optique :

$$(MN) = nMI + \frac{\lambda_0}{2} + nIN.$$

• Cas d'un rayon lumineux passe par un point de convergence : $(MN) = nMN + \frac{\lambda_0}{2}$.

14.4 Théorème de Malus

14.4.1 Surface d'onde

Soit une source ponctuelle S monochromatique. Une surface d'onde Σ associée à S est un lieu de points M tels que (SM) est constant. $M_i \in \Sigma, (SM_1) = (SM_2) = \ldots = (SM_N).$ $M \in \Sigma, \varphi(M)$ est constante. Tous le $M \in \Sigma$ ont même état vibratoire.

14.4.2 Énoncé

Après un nombre quelconque de réflexions ou de réfractions, les rayons lumineux issus d'une source ponctuelle sont orthogonaux aux surfaces d'ondes.

14.4.3 Application : formulation alternative du signatisme

Soit A et A' deux points.

Le système optique est rigoureusement stigmatique pour (AA') si les chemins optiques (AA')sont les mêmes pour tous les rayons lumineux issus de A et passant par A'.

14.4.4 Propriété

Les chemins optiques entre deux mêmes surfaces d'onde sont indépendant des rayons lumineux suivis.

14.5 Exemples d'onde

14.5.1 Onde sphérique

Une onde est shpérique si ses surfaces d'ondes sont des sphères centrées en un même point O. Elles sont de la forme $S(M,t) = \frac{A}{r}\cos(\omega t - \vec{k}\cdot\vec{r})$ avec A une constante, $\vec{r} = \overrightarrow{OM}$ et $\vec{k} = k\cdot\vec{u}, k > 0$. Dans ce cas, il s'agit d'une onde divergente à partir de O. Si $s(M,t) = \frac{A}{r}\cos\left(\omega t + \vec{k}\cdot\vec{r}\right)$, il s'agit d'une onde convergente vers O.

14.5.2 Onde plane

Une onde est plane si ses surfaces d'onde sont planes et parallèles entre elles. $s(M,t) = A\cos\left(\omega t + \varphi(O) - \overrightarrow{k} \cdot \overrightarrow{OM}\right).$

Interférences à deux ondes

15.1 Éclairement résultant dû à deux ondes monochromatiques

Soit deux sources S_1, S_2 et M un point de l'espace. $s_1(S_1, t) = A_1 \cos(\omega_1 t + \varphi_{S_1})$ et $s_2(S_2, t) = A_2 \cos(\omega_2 t + \varphi_{S_2})$ avec A_1, A_2 sont des constantes.

15.1.1 Calcul avec les réels

 $\mathcal{E}_1 = \frac{1}{2}KA_1^2 \text{ et } \mathcal{E}_2 = \frac{1}{2}KA_2^2. \text{ Formule de Fresnel des interférences à deux ondes } : \mathcal{E}(M) = \mathcal{E}_1(M) + \mathcal{E}_2(M) + 2\sqrt{\mathcal{E}_1\mathcal{E}_2}\cos(\Delta\varphi(M)) \text{ avec } \Delta\varphi(M) = \varphi_2(M) - \varphi_1(M).$

15.1.2 Interprétation

Valeur maximale de \mathcal{E} : $\mathcal{E}_{\min} = (\sqrt{\mathcal{E}_1} - \sqrt{\mathcal{E}_2})^2$. Valeur maximale de \mathcal{E} : $\mathcal{E}_{\max} = (\sqrt{\mathcal{E}_1} + \sqrt{\mathcal{E}_2})^2$.

Cas particulier : $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} = 0$: $\mathcal{E}_{\min} = 4\mathcal{E}_0$ et $\mathcal{E}_{\min} = 0$.

Si $\Delta \varphi(M) = 0[2\pi]$, l'éclairement est maximal : on a des interférences construtives. Si $\Delta \varphi(M) = \pi[2\pi]$, l'éclairement est minimal : on a des interférences destructives.

Mais il faut que les sources soient non seulement synchrones mais cohérentes. Pour cela, il faut une seule source et un dispositif interférométrique qui donnera deux sources secondaires cohérentes.

 $\Delta \varphi = \frac{2\pi}{\lambda_0} \left((SM)_1 - (SM)_2 \right) = \frac{2\pi}{\lambda_0} \delta.$ $\Delta \varphi(M) = 0[2\pi] \Leftrightarrow \delta \text{ est un nombre entier de fois } \lambda_0. \ \delta = k\lambda_0, \ k \in \mathbb{Z}.$ $\Delta \varphi(M) = \pi[2\pi] \Leftrightarrow \delta \text{ nombre impair de demi longueur dans le vide } \left(\frac{\lambda_0}{2}\right) \lambda_0. \ \delta = k\lambda_0, \ k \in \mathbb{Z}.$ $\delta = (2k+1)\frac{\lambda_0}{2}, \ k \in \mathbb{Z}.$

15.1.3 Utilisation de la notation complexe

Deux sources cohérentes et synchrones. $s_1(M,t) = A_1 \cos(\omega t + \varphi_1(M)) \rightarrow \underline{s_1} = A_1 e^{j(\omega t + \varphi_1(M))}.$

 $s_2(M,t) = A_2 \cos(\omega t + \varphi_2(M)) \rightarrow \underline{s_2} = A_2 e^{j(\omega t + \varphi_2(M))}.$ $\mathcal{E} = \frac{1}{2}K(A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_1 - \varphi_2))$

15.1.4Notion de cohérence

Dans le calcul dondamental, $\varphi_1(M) - \varphi_2(M)$ apparaît. $\varphi_1(M) - \varphi_2(M) = \varphi(S_1) - \varphi(S_2) + \varphi(S_2) - \varphi(S_2) \frac{2\pi}{\lambda_0}((S_2M) - (S_1M)).$

Pour deux sources synchrones, $\varphi(S_1) - \varphi(S_2)$ n'est pas constant. C'est dû au mécanisme de la lumière : modèle de trains d'onde.

On doit pour obtenir des interférences, utiliser une seule source et un dispositif interféromatrique qui fabrique deux sources secondaires cohérentes. Ainsi, $\varphi_1(M) - \varphi_2(M) = \frac{2\pi}{\lambda_2}((SS_2) - (SS_1)).$ On élimine l'influence du mécanisme d'émission de la lumière.

15.1.5En résumé

- Si S_1 et S_2 ne sont pas synchrones, $\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2$.
- Si S₁ et S₂ sont synchrones mais pas cohérentes, E = E₁ + E₂.
 Si S₁ et S₂ sont synchrones et cohérentes, on somme les amplitudes puis on passe aux éclairements : E = E₁ + E₂ + 2√E₁E₂ cos(Δφ) avec Δφ = φ₁(M) φ₂(M).

15.2Figures d'interférences

Maintenant, on considère à chaque fois des sources synchrones et cohérentes.

15.2.1Champs d'interférences

Le champs d'interférence désigne la zone de suerposition des rayons issus des deux sources S_1 et S_2 .

15.2.2Franges d'interférences

L'éclairement dans le champs d'interférences est fonction de $M : \mathcal{E}(M)$. Si on fixe une valeur de \mathcal{E} , le lieu des points M tels que $\mathcal{E}(M) = \mathcal{E}$ définie une surface. On observe le phénomène sur un écran. On observe donc les intersections des surfaces de même éclairement avec le plan de l'écran : on obtient des courbes dans le plan de même éclairement. On les appelles les franges d'interférences.

15.2.3Exemple

Soit deux sources S_1 e S_2 à distance finie dans un milieu homogène d'indice n. Les surfaces d'égal éclairement sont des hyperboloïdes de révolution de foyer S_1 et S_2 . Observation dans un plan perpendiculaire à S_1S_2 : franges circulaires centrés sur S_1S_2 . Observation dans un plan parallèle à S_1S_2 : les franges sont des hyperboles. Dans la pratique, on n'observe que les parties rectiligne et parallèles entre elles de ces hyperboles : franges rectilignes.

15.3 Trous de Young

15.3.1 Dispositif

$$S_1 = \left(\frac{-a}{2}, 0, 0\right)$$
 et $S_2 = \left(\frac{a}{2}, 0, 0\right), M(x, y, z).$

15.3.2 Calcul de l'éclairement

Posons \mathcal{E}_0 la valeur commune d'éclairement dûe aux deux sources seules : $\mathcal{E}_0 = \mathcal{E}_1 = \mathcal{E}_2$. $\mathcal{E} = 2\mathcal{E}_0(1 + \cos(\Delta \varphi))$ On suppose $a \ll D$ at M au voisingre de Q' i e $x \ll D$ at $u \ll D$.

On suppose $a \ll D$ et M au voisinage de O' i.e. $x \ll D$ et $y \ll D$.

$$\mathcal{E}(M) = 2\mathcal{E}_0\left(1 + \cos\left(\frac{2\pi n \, ax}{\lambda_0 \, D}\right)\right)$$

15.3.3 Description

 \mathcal{E} n'est fonction uniquement de x. On a donc bien des franges rectilignes et parallèles à Oy. \mathcal{E} est périodique en x: les franges sont régulièrement espacées. L'interfrange désigne la période spatiale de la figure et est notée i.

$$i = \frac{\lambda_0 D}{na}$$

L'ordre d'interférence désigne p tel que $p = \frac{\delta}{\lambda} = \frac{\Delta \varphi}{2\pi}$ La frange centrale est particulière : elle est telle que l'ordre d'interférence est nul et $\delta = 0 = (SM)_1 - (SM)_2$.

15.4 Deux sources ponctuelles à l'infini

$$\mathcal{E} = A^2 (1 + \cos(2k\sin\alpha z))$$

avec α l'angle entre $\overrightarrow{k_1}$ et l'horizontale.

Les surfaces de même éclairement sont les plan orthogonaux à Oz. On observe avec un écran placé dans le plan d'équation x =consante : on obtient des franges rectilignes parallèles entre elles.

Périodicité de
$$\mathcal{E}$$
 en $z : i = \frac{-\pi}{k \sin \alpha} = \frac{\lambda_0}{2n \sin \alpha}.$

15.5 Deux sources ponctuelles, écran perpendiculaire à l'axe des sources

$$\mathcal{E} = 2\mathcal{E}_0\left(1 + \cos\left(\frac{2\pi}{\lambda_0}na\left(1 - \frac{\rho^2}{2D^2}\right)\right)\right)$$

 \mathcal{E} n'est fonction que de ρ : on a des franges circulaires mais pas périodique en ρ . Notons ρ_k le rayon correspondant au k^{e} anneau brillant.

$$\rho_k = \sqrt{\frac{2\lambda_0 D^2 k}{na}}$$

15.6 Localisation

Dans les exemples précédents, on aurait pu placer l'écran d'observation dans tout un volume et y voir des interférences. Les interférences sont dites non localisées. C'est le cas pour toutes interférences à partir de deux sources ponctuelles.

15.7 Quelques dispositifs interférométriques

- miroir de Lloyde;
- miroirs de Fresnel;
- lentille de Billet;
- biprisme de Fresnel;
- interféromètre de Michelson.

15.8 Utilisation d'une lentille dans l'observation des interférences

On reprend l'expérience des trous de Young en ajoutant une lentille entre la plaque percée et l'écran d'observation.

Par le principe du retour inverse de la lumière et du théorème de Malus, on peut déterminer les chemins optiques.
L'interféromètre de Michelson

16.1 Interféromètre idéal

Il comprend :

- deux miroirs plans M_1 et M_2 orthogonaux ou quasi orthogonaux entre eux;
- une lame semi-réfléchissante, aussi appelée séparatrice, infiniement fine placée suivant la bissectrice des deux miroirs.

16.2 Utilisation avec une source ponctuelle à distance finie

16.2.1 Repliement

On introduit l'image S' de la source par la séparatrice et 'image M'_1 du miroir M_1 par rapport à la lame séparatrice. Par symétrie, les chemins optiques seront les mêmes dans l'interféromètre déplié et dans l'interféromètre replié. On distingue alors deux configuration :

- en lame d'air : M_1 et M_2 sont orthogonaux donc M'_1 et M'_2 sont parallèles ;
- en coin d'air : M_1 et M_2 ne sont pas orthogonaux donc M'_1 et M'_2 ne sont pas parallèles.

16.2.2 Observation des interférences

Lame d'air

Avec un écran orthogonal à l'axe des sources, on observe des anneaux d'interférences.

Coin d'air

Avec un écran orthogonal à l'axe des sources, on observe des franges rectilignes d'interférences régulièrement espacées.

16.3 Utilisation avec une source étendue

16.3.1 Avantages - inconvénients

On espère obtenir un phénomène plus lumineux. Mais il y a alors superpositions de beaucoup de figures et d'interférences déaclées les unes par rapport aux autres. On a soit un éclairement uniforme soit un brouillage.

Pour un dispositif à division du front d'onde, il y a toujours brouillage.

Pour un dispositif à division d'amplitude, il y a brouillage partout sauf pour une surface particulière, la surface de localisation des interférences. Cette surface est le lieu d'intersection des deux rayons lumineux issus d'un même rayon incident.

16.3.2 Lame d'air

L'intersection est rejetée à l'infini. La surface de localisation est donc à l'infini. Pour l'observation, on rajoute une lentille convergente en sortie pour ramener la figure à distance finie en plaçant l'écran dans le plan focal image de la lentille.

$$\delta = 2ne\cos i$$

avec e la distance entre les deux miroirs et i l'angle MO_2O . On dit qu'il y a contact optique quad e = 0.

16.3.3 Coin d'air

Les interférences sont localisées sur les miroirs. Obsevation à l'oeil nu ou avec une lentille de projection. L'écran et les miroirs sont alors conjugués par la lentille.

$$\delta = 2ne$$

avec e la distance entre les deux miroirs. e est local.

$$i = \frac{\lambda_0}{2n\alpha}$$

16.4 Interféromètre réel

On trouve en plus des éléments sités précédement une lame compensatrice. La séparatrice n'étant pas infiniment fine, il y a une dissymétrie parfois génante.

La compensatrice est une lame à faces parallèles identique à la séparatrice sauf pour le traitement anti-reflet. Elle symétrise les trajets.

Interférences en lumière partiellement cohérente

17.1 Position du problème

Jusqu'à présent, on a toujours utilisé devant les systèmes interférométriques une source ponctuelle et monochromatique mais ça n'existe pas.

Problème de cohérence spatiale lors du passage d'une source ponctuelle à une source étendue. Problème de cohérence temporelle lors du passage de monochromatique à polychromatique.

17.2 Contraste local

17.2.1 Définition

$$C(x) = \frac{\mathcal{E}_{\max}(x) - \mathcal{E}_{\min}(x)}{\mathcal{E}_{\max}(x) + \mathcal{E}_{\min}(x)}$$

 $C(x) \in [0,1]$. C(x) = 1: contraste fort. C(x) = 0: contraste faible.

17.2.2 Un résultat

Très souvent, on aura $\mathcal{E}(x) = K\left(1 + f(x)\cos\left(\frac{2\pi x}{i}\right)\right).$

Sous réserve que $f(x) \in [-1, 1]$ et que ses variations soient faibles sur une distance de l'ordre de i,

$$C(x) = |f(x)|$$

Note : on appelle la fonction sinus cardinal la fonction sinc :

$$\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \mapsto \left| \begin{array}{c} \frac{\sin x}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{array} \right. \end{cases}$$

17.3 Sources ponctuelles multiple ou souce étendue : cohérence spatiale

17.3.1 Principe d'étude

Des sources ponctuelles de même caractéristiques mais physiquement distinctes sont nécessairement incohérentes. Chacune, par l'utilisation d'un interféromètre donnera sa propre figure d'interférence décrité par $\mathcal{E}_i(M)$ d'où l'éclairement total : $\mathcal{E}(M) = \sum \mathcal{E}_i(M)$.

Une source étendue est constituée d'une infinité de sources élémentaires ponctuelles, incohérentes entre-elles, réparties linéiquement, surfaciquement ou en volume. Chacune de ces sources Q donne sa propre figure d'interférences décrite par l'éclairement élémentaire $d\mathcal{E}_Q(M)$. Au total : $\mathcal{E}(M) = \int_{\text{source}} d\mathcal{E}_Q(M)$

17.3.2 Trous de Young éclairés par deux sources ponctuelles

$$\mathcal{E}(x) = 4\mathcal{E}_0 \left(1 + \cos\left(\frac{2\pi n_{\rm air} aX}{\lambda_0 d}\right) \cos\left(\frac{2\pi n_{\rm air} ax}{\lambda_0 D}\right) \right)$$
$$C(x) = \left| \cos\left(\frac{2\pi n_{\rm air} aX}{\lambda_0 d}\right) \right|$$

17.3.3 Trous de Young éclairés par une fente source parallèle aux sources

$$\mathcal{E}(x) = 2\mathcal{E}_0\left(1 + \operatorname{sinc}\left(\frac{\pi n_{\operatorname{air}} aL}{\lambda_0 d}\right) \cos\left(\frac{2\pi n_{\operatorname{air}} ax}{\lambda_0 D}\right)\right)$$

On obtient des franges rectilignes périodiques en x espacées de $i = \frac{\lambda_0 D}{n_{\text{air}} a}$

$$C(x) = \left| \operatorname{sinc} \left(\frac{\pi n_{\operatorname{air}} a L}{\lambda_0 d} \right) \right|$$

On pose $L_{CS} = \frac{\lambda_0 d}{n_{\text{air}}a}$. Pour $L \ll L_{CS}$, on a des franges bien contrastées : pas de brouillage. Pour $L \gg L_{CS}$, on a des franges peu contrastées : brouillage. L_{CS} est la longueur de cohérence spatiale du dispositif. Remarques :

- L_{CS} dépend de la source et du dispositif interférométrique;
- $L_{CS} = +\infty$ pour l'interterféromètre de Michelson en lame d'air.

17.3.4 Passage aux fentes d'Young

On prend la fente source orthogonale à l'axe des trous. Pour n'importe quelle source élémentaire, les sources secondaires sont en phase et donnent le même système de franges avec la frange centrale au même endroit et le même interfrange : coïncidence parfaite pour toute source élémentaire.

Si on étend les trous de manière orthogonale à la fente source, on a à nouveau superposition d'un très grand nombre de système de franges identiques.

17.4 Source polychromatique cohérente temporelle :

17.4.1 Démarche

Chaque longueur d'onde de la source donne son propre système d'interférence. Les différentes sources étant non synchrones, on obtient l'éclairement par sommation des éclairements dûs à chaque longueur d'onde.

• Spectre discret : N sources monochromatiques de longueur d'onde λ_i .

$$\mathcal{E}_i(M) = 2\mathcal{E}_{0,i}\left(1 + \cos\left(\frac{2\pi}{\lambda_i}\delta\right)\right)$$

Éclairement résultant : $\mathcal{E}(M) = \sum_{i} 2\mathcal{E}_{0,i} \left(1 + \cos\left(\frac{2\pi}{\lambda_i}\delta\right)\right).$

• Spectre continue : source décrite par sa densité spectrale $g(\nu)$.

$$\mathcal{E}(M) = \int_{\text{Source}} 2g(\nu) \left(1 + \cos\left(\frac{2\pi\nu}{c}\delta\right)\right) d\nu$$

17.4.2 Source bichromatique

Deux sources monochromatique d'onde λ_1, λ_2 .

$$\mathcal{E}(M) = 4\mathcal{E}_0\left(1 + \cos\left(\pi\delta\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right)\right)\cos\left(\pi\delta\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)\right)\right)$$

Hypothèse : λ_1 et λ_2 très proches :

- $\lambda_1 \approx \lambda_2 = \lambda_0;$
- $\Delta \lambda = \lambda_2 \lambda_1 \gg \lambda_0.$

Cas des trous de Young :

$$C(x) = \left| \cos \left(\frac{2\pi}{2\lambda_0^2} \frac{\Delta \lambda a x}{D} \right) \right|$$

Dans le cas des trous de Young, l'abcisse correspondant au premier brouillage est :

$$x_b = \frac{\lambda_0^2 D}{2\Delta\lambda a}$$

17.4.3 Raie à profil rectangulaire

Une « vraie » raie de lampe spectrale est fine mais a une « largeur ». Soit $\delta \nu$ la largeur du rectangle et g_0 sa hauteur (dans le graphe de la densité spectrale).

$$\mathcal{E}(M) = 2g_0 \Delta \nu \left(1 + \operatorname{sinc}\left(\frac{\pi \delta \Delta \nu}{c}\right) \cos\left(\frac{2\pi \delta(\nu_1 + \nu_2)}{2c}\right)\right)$$

Dans le cas des trous de Young :

$$\mathcal{E}(M) = 2g_0 \Delta \nu \left(1 + \operatorname{sinc} \left(\frac{\pi a x \Delta \nu}{cD} \right) \cos \left(\frac{2\pi a x (\nu_1 + \nu_2)}{2cD} \right) \right)$$
$$C(x) = \left| \operatorname{sinc} \left(\frac{\pi a x \Delta \nu}{cD} \right) \right|$$

On pose $l_{CT} = \frac{c}{\Delta \nu} = \frac{1}{\Delta \sigma}$ la longueur de cohérence temporelle de la source. Les interférences en un point M de l'écran seront bien contrastées si $\delta(M) \ll l_{CT}$.

17.4.4 En lumière blanche

En lumière blanche, on ne voit que quelques franges d'interférences. On a, lorsqu'on s'écarte de la frange centrale des franges irisées (teintes de Newton) puis du blanc d'ordre dupérieur dont l'analyse spectrale donne un spectre cannelé : des longueurs d'onde sont absentes.

17.4.5 Lien avec le train d'onde

On pose $l_{CT} = \frac{1}{\Delta \sigma}$. On voit que $\delta < l$ avec l la longueur d'un train d'onde. Soit $\tau = \frac{l}{c} = \frac{1}{\Delta \nu}$ la durée d'un train d'onde. On a par la transformée de Fourier : $\delta < l = c\tau = \frac{c}{\Delta \nu} = l_{CT}$

17.4.6 Conclusion, généralisation

Pour observer des interférences avec un bon contraste, il faut que δ au point d'observation soit telle que $\delta \ll l_{CT}$, longueur de cohérence temporelle de la source, elle-même liée à sa largeur spectrale $l_{CT} = \frac{c}{\Delta \nu} = \frac{1}{\Delta \sigma}$.

17.5 Un point de vue général

L'éclairement est déterminé par $\Delta \varphi$. On aura une bonne superposition si $\delta(\Delta \varphi) \ll 2\pi$. $\delta(\Delta \varphi)$ est la différence des différences de phases au point d'observation entre deux éléments quelconques de la source.

- cohérence temporelle : $\delta_o \ll \frac{c}{\delta \nu}$ avec δ_o le chemin optique ;
- cohérence spatiale (cas des trous de Young) : $\delta X \ll \frac{\lambda d}{a}$.

Les réseaux

18.1 Généralités

18.1.1 Définition

Un réseau est un ensemble de motifs diffractants, appelés traits du réseaux, réguilièrement espacés, séparés par une distance a appelé le « pas » du réseau.

On note *n* le nombre de traits par unité de longueur du réseau. On a $a = \frac{1}{n}$.

18.1.2 Exemples

- Réseaux par réflexion : réseau à échelettes ;
- Réseaux par transmission
 - par amplitude;
 - par phase.

18.1.3 Modélisation pour l'étude

Un trait un est une fente inifiniment fine qui diffracte la lumière quasiemment uniformément dans toutes les directions.

18.1.4 Cadre de l'étude

La source est placé à l'infini. L'oservation se fait à l'infini i.e. avec un écran très éloigné ou dans le plan focal d'une lentille convergente.

18.2 Formule des réseaux

18.2.1 Manipulation

On observe des taches lumineuses dans la direction d'incidence et dans d'autres directions privilégiées. L'intensité de ces taches décroît lorsqu'on s'écrate de la direction d'incidence. Plus n est grand, plus les taches sont écartées et moins il y a de taches visibles.

18.2.2 Interprétation

Calculons $\delta_{i|i+1}$ la différence de marche entre deux rayons passés par deux traits successifs : $\delta_{i|i+1} = a(\sin \theta - \sin \theta_i).$ θ désigne l'angle entre la normale au réseau et les rayons qui sortent du réseau tandis que θ_i désigne l'angle entre les rayons entrants dans le réseau et la normale.

On aura interférences constructives si $\delta_{i|i+1} = p\lambda$ i.e. $\sin \theta_p - \sin \theta_i = \frac{p\lambda}{a}$. Ce raisonnement est valable car si on des interférences constructives pour deux traits successifs,

elles seront contructives pour tous les traits du réseau.

 θ_p est une direction privilégiée dans la quelle on trouve une tache. Formule des réseaux :

$$\sin \theta_p = \sin \theta_i + \frac{p\lambda}{a}$$

18.3 Le minimum de dérivation

Pour un ordre donnée a, il existe une incidence particulière $\theta_{i_m,p}$ telle que la dérivation correspondant à cet ordre soit minimale.

$$\theta_{i_m} = -\theta_{i_m,p}$$

Les directions d'incidences et d'observation sont symétriques par rapport au réseau.

La formule des réseaux devient alors $2\sin\theta_{p,m} = \frac{p\lambda}{a}$.

 $D_{m,p} = \theta_{p,m} - \theta_{i_m,p} \text{ donc } 2\sin\left(\frac{D_{m,p}}{2}\right) = \frac{p\lambda}{a}.$

Utilisation : mesure de a pour une longueur d'onde étalon puis mesure d'une longueur d'onde inconnue.

18.4 Utilisation en lumière polychromatique

Un réseau est un système dispersif. Les grandes longueurs d'onde sont plus déviées que les autres.

Remarque : quand p augmente, le système est plus dispersif : interessant pour l'analyse de la lumière. Mais on tombe sur le problème de recouvrement des ordres pour p élevé.

Diffraction

19.1 Introduction

Diffringere : casser en morceaux.

Diffraction : éparpillement de la lumière qui apparaît quand on essaie de contraindre latéralement sa propagation (exemple : trous de Young).

Elle a toujours lieu mais n'est pas forcément observable. Effets notables quand la taille caractéristique de l'obstacle est de l'ordre de la longueur d'onde.

19.2 Principe de Huygens-Fresnel

Idée de Huygens : pour trouver ce qui se passe au delà d'une surface, on peut remplacer la source primaire S par un ensemble de sources secondaires emettant des ondelettes sphériques réparties sur cette surface.

Idée de Fresnel : toutes ces sources secondaires, dans le cas de la lumière, sont cohérentes entreelles. L'état vibratoire en un point M résulte d'une interférence entre les ondes émises par ces sources.

Énoncé du principe : Chaque élément de surface dS_P centré sur P, de la pupille diffractante atteint par l'onde incidente se comporte comme une source secondaire émettant une ondelette, de même fréquence, de même phase que l'onde incidente et dont l'amplitude est proportionnelle à dS_P . Toutes ces sources sont cohérentes entre-elles.

19.3 Diffraction de Fraunhofer

19.3.1 Cadre de l'étude

Pupille diffractante : ouverture transparente dans un plan.

Dans le cadre de la diffraction de Fraunhofer, la source d'ondes planes S_{∞} est à l'infini et l'observation se fait en un point M_{∞} , à l'infini.

But déterminer l'éclairement dans la direction de M_{∞} dû à la diffraction par la pupille de l'onde venant de S_{∞} .

Remarque : pour coder une éventuelle modification de l'onde incidente par la pupille, on introduit la transparence complexe $\underline{t}(P)$, en P, l'amplitude « ressentie » de l'onde incidente. $\underline{s}(P,t) = \underline{t}(P)\underline{s}_i(P,t)$.

19.3.2 Formulation mathématique

Soient $\overrightarrow{k_i}$ le vecteur d'onde associé une onde émise par S_{∞} et \overrightarrow{k} le vecteur d'onde associé au rayon résultant. <u>so</u> l'amplitude complexe de la source.

$$S(M_{\infty}, t) = \iint_{\Sigma} K \underline{s_0 t}(P) e^{j\omega t} e^{-j\overrightarrow{k_i} \cdot \overline{S_{\infty} P}} \cdot e^{-j\overrightarrow{k} \cdot \overline{PM_{\infty}}} dS_P$$

On introduit un point O de référence dans le plan de la pupille (si possible le centre de symétrie).

$$\underline{s}(M_{\infty}) = K \underline{s_0} \iint_{\Sigma} \underline{t}(P) e^{j(\overrightarrow{k} - \overrightarrow{k_i}) \cdot \overrightarrow{OP}} dS_P$$
$$\overrightarrow{k_i} = \frac{2\pi}{\lambda} \begin{vmatrix} \alpha_i \\ \beta_i \\ \gamma_i \end{vmatrix} \overrightarrow{k} = \frac{2\pi}{\lambda} \begin{vmatrix} \alpha \\ \beta \\ \gamma \end{vmatrix}$$
$$\underline{s}(M_{\infty}) = K \underline{s_0} \iint_{X,Y} \underline{t}(P) e^{j\frac{2\pi}{\lambda}(((\alpha - \alpha_i)X + (\beta - \beta_i)Y))} dX dY$$

19.3.3 Autre forme opérationnelle avec des différences de chemins optiques

On pose $\delta_{P/O} = (S_{\infty}PM_{\infty}) - (S_{\infty}OM_{\infty})$

$$\underline{s}(M_{\infty}) = K \underline{s_0} \iint_{\Sigma} \underline{t}(P) e^{-j\frac{2\pi}{\lambda}\delta_{P/O}} dS_P$$

19.4 Diffraction par une ouverture rectangulaire

19.4.1 Calcul de l'éclairement

Soit un fente rectangulaire centré en O, de hauteur b et de largeur a.

$$\mathcal{E}(M_{\infty}) = \frac{1}{2} K s_0^2 a^2 b^2 \operatorname{sinc}^2 \left(\frac{\pi(\alpha - \alpha_i)a}{\lambda} \right) \operatorname{sinc}^2 \left(\frac{\pi(\beta - \beta_i)b}{\lambda} \right)$$

19.4.2 Description de la figure

La valeur maximale globale est prise pour $\alpha = \alpha_i$ et $\beta = \beta_i$ ce qui correspond à $\overrightarrow{u} = \overrightarrow{u_i}$. C'est dans la direction d'incidence : la direction de l'optique géométrique. Avec $\beta = \beta_i$ fixé, on a :

$$\mathcal{E}(\alpha) = \mathcal{E}_{\max} \operatorname{sinc}^{2} \left(\frac{\pi}{\lambda} a(\alpha_{i} - \alpha) \right)$$

Le long de l'axe $\beta = \beta_i$, on observe des traits : un grand trait central, très lumineux, de largeur angulaire $2p = \frac{2\lambda}{a}$, entouré de traits secondaires deux fois moins lumineux et dont l'éclairement décroît.

On a une tache principale de diffraction, très lumineuse, centrée sur la direction de l'optique géométrique de largeur angulaire totale $\frac{2\lambda}{a} + \frac{2\lambda}{d}$. On a des taches secondaires, beaucoup moins lumineuses dont une (ou deux) dimension(s) angulaire(s) est (sont) deux fois plus petite(s).

19.4.3 Passage à la fente fine

Ouverture rectangulaire pour laquelle $b \gg a$. Pour le calcul, on se limitera à une intégrale simple (diffraction dûe à *b* négligée).

19.4.4 Utilisation d'une lentille

$$\overrightarrow{u} = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|}$$
$$\overrightarrow{u} = \begin{vmatrix} x/f' \\ y/f' \\ 1 \end{vmatrix}$$

19.5 Ouverture circulaire

On peut écrire le début du calcul mais on ne peut pas le finir avec les fonctions habituelles. Les maxima secondaires sont encore plus faibles que pour l'ouverture rectangulaire. Compte-tenu de la symétrie de révolution, une seule variable est nécessaire.

Le rayon angulaire correspondant à la 1^{er} annulation est $\frac{1,22\lambda}{D}$ avec D = 2R le diamètre du trou.

19.6 Importance de la diffraction dans la formation des images en optique géométrique

19.6.1 Problématique

La lentille est de taille finie (diamètre D) contraint l'onde incidente. Ceci entraine la diffraction. Ainsi, S', l'image de S, ne sera pas ponctuelle.

19.6.2 Lien avec la diffraction à l'infini

S' n'est pas ponctuelle mais est une tache d'Airy centré sur S' dont la taille dépend entre autre de D, f' et d.

19.6.3 Critère de Rayleigh

Soient deux sources S_1 et S_2 qui donnent deux taches d'Airy.

Si elle ne se superposent pas, on arrive à distinguer les deux images.

Si elle se superposent trop, on n'arrive pas à distinguer les deux images.

Cas limite de séparation : définit le pouvoir de séparation :

le premier minimum d'une des taches de diffraction est confondu avec le maximum de l'autre tache.

Conclusion : le pouvoir de séparation de tout appareil optique est toujours limité par le phénomène de diffraction.

19.7 Quelques propriétés générales

19.7.1 Translation de la pupille diffractante

Soit Σ une pupille diffractante.

Si on fait subir une translation dans son plan à Σ , l'éclairement restera le même : $\mathcal{E}'(M_{\infty}) = \mathcal{E}(M_{\infty})$.

19.7.2 Théorème des écrans complémentaires / de Babinet

Les figures de diffractions de deux écrans complémentaires sont identiques en tout point différent de la direction de l'optique géométrique.

19.7.3 Ensemble de pupilles identiques se déduisant les unes des autres par des translations

On a N pupilles diffractantes depoints homologues O_i .

Toutes les sources secondaires de toutes les pupille sont cohérentes : il faut sommer les amplitudes et pas les éclairements.

$$\mathcal{E}(M_{\infty}) = \mathcal{E}_{1}(M_{\infty}) \left| \sum_{i=1}^{N} e^{-\frac{2\pi}{\lambda} \delta_{O_{i}/O_{1}}} \right|^{2}$$

 $\mathcal{E}_1(M_\infty)$ est l'éclairement dû à une seule source.

 $\left|\sum_{i=1}^{N} e^{-\frac{2\pi}{\lambda}\delta_{O_i/O_1}}\right|^2 \text{ est un terme d'interférence entre les } N \text{ sources secondaires ponctuelles } O_i$ (indépendant de la forme de Σ .

Cinquième partie Electrostatique

Analyse vectorielle

20.1 Notion de champ

• Champ scalaire : $\begin{cases} \text{champ vectoriel} \to \text{champ scalaire} \\ M \mapsto V(M) \\ \text{Exemple : champ de température.} \end{cases}$

• Champ vectoriel : $\begin{cases} \text{champ vectoriel} \to \text{champ vectoriel} \\ M \mapsto \overrightarrow{A}(M) \end{cases}$.

Exemples : champ de vitesse d'un fluide en écoulement, \overrightarrow{B} et \overrightarrow{E} (Sup). On rajoute une dépendance temporelle : V(M,t), $\overrightarrow{A}(M,t)$ Champ uniforme : ne dépend pas de M. Champ stationnaire : ne dépend pas de t.

20.2 Circulation d'un champ de vecteur

20.2.1 Circulation élémentaire

$$d\mathcal{C} = \overrightarrow{A} \cdot \overrightarrow{d}$$

20.2.2 Circulation finie

$$\mathcal{C}_{M_1 \to M,;\Gamma} = \int_{M_1,\Gamma}^{M_2} \overrightarrow{A}(P) \cdot \overrightarrow{dl}$$

20.3 Flux d'un champ de vecteurs

20.3.1 Flux élémentaire

 \overrightarrow{dS} : vecteur de norme dS, perpendiculaire à dS, orienté arbitrairement. Le flux élémentaire $d\Phi$ de \overrightarrow{A} à travers \overrightarrow{dS} centré sur P est :

$$d\Phi = \overrightarrow{A}(P) \cdot \overrightarrow{dS}$$

20.3.2 Flux à travers une surface finie non fermée

 Σ est orienté arbitrairement mais de manière continue.

$$\Phi = \iint_{\Sigma} \overrightarrow{A}(P) \cdot \overrightarrow{dS}$$

Cas particulier :

cas d'une surface d'appuyant sur un contour fermé orienté $\Gamma : \Sigma$ s'appuye sur Γ . Alors Γ est orientésuivant la règle du tire-bouchon. Φ est calculé comme précédement.

20.3.3 Flux à travers une surface fermée

Surface fermée : définit sans ambiguité un intérieur et un extérieur. Une telle surface fermée est alors orientée de l'intérieur vers l'extérieur.

$$\Phi = \oint \overrightarrow{A}(P) \cdot \overrightarrow{dS}$$

20.4 Les opérateurs

20.4.1 Gradient

$$\overrightarrow{grad}: \left\{ \begin{array}{c} \text{champ scalaire } \to \text{champ vectoriel} \\ u \mapsto \overrightarrow{grad} u \end{array} \right.$$

Propriété : $du = \overrightarrow{grad} \ u \cdot \overrightarrow{dl}$.

$$\overrightarrow{grad} u(x, y, z) = \begin{vmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial z} \end{vmatrix} \quad \overrightarrow{grad} u(r, \theta, z) = \begin{vmatrix} \frac{\partial u}{\partial r} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \\ \frac{\partial u}{\partial z} \end{vmatrix} \quad \overrightarrow{grad} u(r, \theta, \varphi) = \begin{vmatrix} \frac{\partial u}{\partial r} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \\ \frac{1}{r \sin \theta} \frac{\partial u}{\partial \varphi} \end{vmatrix}$$

Propriétés :

- $\overrightarrow{grad} u$ est orthogonal aux surfaces équi-u.
- $\overrightarrow{grad} u$ est dirigé dans le sens des u croissants.

20.4.2 Divergence

$$div: \begin{cases} \text{champ vectoriel} \to \text{champ scalaire} \\ \overrightarrow{A} \mapsto div \overrightarrow{A} \end{cases} \quad \text{tel que } d\Phi = div \ (\overrightarrow{A}) dz \end{cases}$$

où $d\Phi$ est le flux élémentaire sortant de \overrightarrow{A} à travers la surface fermée délimitant le volume $d\tau$.

$$\overrightarrow{A} = (x, y, z) = \begin{vmatrix} A_x(x, y, z) \\ A_y(x, y, z) \\ A_z(x, y, z) \end{vmatrix} \quad div \overrightarrow{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

20.4.3 Rotationnel

$$\overrightarrow{rot}: \left\{ \begin{array}{c} \text{champ vectoriel} & \rightarrow \text{champ vectoriel} \\ \overrightarrow{A} & \rightarrow \overrightarrow{rot} & \overrightarrow{A} \end{array} \right. \quad \text{tel que } d\mathcal{C} = \overrightarrow{rot}(\overrightarrow{A}) \cdot \overrightarrow{dS}$$

où $d\mathcal{C}$ est la circulation élémentaire de \overrightarrow{A} le long de Γ (\overrightarrow{dS} vecteur surface élémentaire de la surface s'appuyant sur Γ).

$$\overrightarrow{A} = (x, y, z) = \begin{vmatrix} A_x(x, y, z) \\ A_y(x, y, z) \\ A_z(x, y, z) \end{vmatrix} \qquad \overrightarrow{rot} \overrightarrow{A} = \begin{vmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{vmatrix}$$

20.4.4 Laplacien scalaire

$$\Delta: \begin{cases} \text{champ scalaire} \to \text{champ scalaire} \\ u \mapsto \Delta u \end{cases} \quad \text{tel que } \Delta u = div \left(\overrightarrow{grad} \ u\right)$$
$$u(x, y, z) \qquad \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

20.4.5 Laplacien vectoriel

$$\Delta: \left\{ \begin{array}{c} \text{champ vectoriel} & \rightarrow \text{champ vectoriel} \\ \overrightarrow{A} & \mapsto \Delta \overrightarrow{A} \end{array} \right. \quad \text{tel que } \Delta \overrightarrow{A} = \overrightarrow{grad} \left(div \overrightarrow{A} \right) - \overrightarrow{rot} \left(\overrightarrow{rot} \overrightarrow{A} \right)$$

$$\overrightarrow{A}(x,y,z) = \begin{vmatrix} \Delta A_x \\ \Delta A_y \\ \Delta A_z \end{vmatrix} \qquad \Delta \overrightarrow{A} = \begin{vmatrix} \frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_x}{\partial y^2} + \frac{\partial^2 A_x}{\partial z^2} \\ \frac{\partial^2 A_y}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \\ \frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2} \end{vmatrix}$$

20.4.6 Quelques relations entre opérateurs

$$div\left(\overrightarrow{rot}\overrightarrow{A}\right) = 0$$
$$\overrightarrow{rot}\left(\overrightarrow{grad}\ u\right) = \overrightarrow{0}$$

Si \overrightarrow{B} est tel que $div\overrightarrow{B} = 0$ alors on admet qu'il existe \overrightarrow{A} tel que $\overrightarrow{B} = \overrightarrow{rot}\overrightarrow{A}$. Si \overrightarrow{A} est tel que $\overrightarrow{rot}\overrightarrow{A} = \overrightarrow{0}$, alors il existe u tel que $\overrightarrow{A} = \overrightarrow{grad} u$.

20.5 Deux théorème fondamentaux

20.5.1 Théorème d'Ostrogradsky

On fixe t. Soit \overrightarrow{A} un champ vectoriel. Soit Σ une surface fermée.

À t fixé,
$$\Phi = \oint_{\Sigma} \overrightarrow{A} \cdot \overrightarrow{dS} = \iint_{V} div \overrightarrow{A} d\tau$$

Soit \overrightarrow{B} un champ à flux conservatif i.e. $\forall \Sigma$ fermée, $\oint _{\Sigma} \overrightarrow{B} \cdot \overrightarrow{dS} = 0$. Alors $\exists \overrightarrow{A}$ tel que $\overrightarrow{B} = \overrightarrow{rot} \overrightarrow{A}$.

20.5.2 Théorème de Stokes

On fixe t. Soit \overrightarrow{A} un champ vectoriel et Γ un contour fermé orienté.

$$\mathcal{C} = \oint_{\Gamma} \overrightarrow{A} \cdot \overrightarrow{dl} = \iint_{\Sigma} \overrightarrow{rot} \overrightarrow{A} \cdot \overrightarrow{dS}$$

avec Σ n'importe qu'elle surface s'appuyant sur Γ , orientée suivant la règle du tire-bouchon. Soit \overrightarrow{A} un champ à circulation conservative i.e. $\forall \Sigma$ fermée, $\oint_{\Sigma} \overrightarrow{A} \cdot \overrightarrow{dl} = 0$. Alors $\exists u$ tel que $\overrightarrow{A} = \overrightarrow{grad} u$

Rappels et compléments d'électrostatique

21.1 Les distributions

- Charge poctuelle q en C.
- Densité linéique : $\lambda(P)$ en $C \cdot m^{-1}$. dl porte $dq = \lambda(P) \cdot dl$.
- Densité surfacique : $\sigma(P)$ en $C \cdot m^{-2}$. dS porte $dq = \sigma(P) \cdot dS$.
- Densité volumique : $\rho(P)$ en $C \cdot m^{-3}$. $d\tau$ porte $dq = \rho(P) \cdot d\tau$.

Pour le moment, aucune carge électrique n'est mobile (statique).

21.2 Champ électrostatique

Principe de superposition. Formule de calcul : formule de Coulomb :

$$\overrightarrow{E}(M) = \frac{q \overrightarrow{u}}{4\pi\varepsilon_0 r^2} = \frac{q \overrightarrow{OM}}{4\pi\varepsilon_0 OM^3}$$
$$\overrightarrow{E}(M) = \int \frac{\lambda(P)dl \overrightarrow{u_{PM}}}{4\pi\varepsilon_0 PM^2} \quad \overrightarrow{E}(M) = \int \frac{\sigma(P)dS \overrightarrow{u_{PM}}}{4\pi\varepsilon_0 PM^2} \quad \overrightarrow{E}(M) = \int \frac{\rho(P)d\tau \overrightarrow{u_{PM}}}{4\pi\varepsilon_0 PM^2}$$

Propriété : \overrightarrow{E} n'est pas défini en q, sur C chargé, sur Σ chargée. Mais il existe dans V chargé. **Symétrie :** symétrie de distribution implique une symétrie de \overrightarrow{E} .

21.3 Relecture du thorème de Gauss

21.3.1 Énoncé sous forme intégrale

Le flux sortant du champ électrostatique à travers une surface fermée Σ , dû à une distribution \mathcal{D} est égale à la charge intérieure à Σ divisée par ε_0 .

$$\oint _{\Sigma} \overrightarrow{E}(P) \cdot \overrightarrow{dS} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

 \overrightarrow{E} n'est pas à flux conservatif.

21.3.2 Formulation locale

$$div\vec{E} = \frac{\rho}{\varepsilon_0}$$

21.4 Potentiel électrostatique

21.4.1 Circulation

 $\exists V$ un scalaire tel que :

$$\int_{M_1}^{M_2} \overrightarrow{E}(P) \cdot \overrightarrow{dl} = -\Delta V = V(M_1) - V(M_2)$$

Pour Γ fermée : $\oint_{\Gamma} \overrightarrow{E} \cdot \overrightarrow{dl} = V(M_1) - V(M_1) = 0$: \overrightarrow{E} est à circulation conservative. V n'est pas défini sur q, sur une densité linéique, mais est défini et continu sur une surface chargé ou dans un volume chargé.

Formules : valables uniquement si \mathcal{D} (la distribution) ne présente pas de charges à l'infini :

$$V(M) = \int_{\mathcal{C}} \frac{\lambda(P)dl}{4\pi\varepsilon_0 PM} \quad V(M) = \iint_{\mathcal{C}} \frac{\sigma(P)dS}{4\pi\varepsilon_0 PM} \quad V(M) = \iiint \frac{\rho(P)d\tau}{4\pi\varepsilon_0 PM}$$

Charges ponctuelles :

$$V(M) = \sum_{i=1}^{N} \frac{q_i}{4\pi\varepsilon_0 P_i M}$$

21.4.2 Formulation locale

 \overrightarrow{E} : circulation conservative donc $\exists u$ tel que $\overrightarrow{E} = -\overrightarrow{grad} u$. En fait, on pose V = -u.

$$\overrightarrow{E} = -\overrightarrow{grad} \ V$$

V est défini à une constante près.

21.4.3 Énergie potentielle d'une charge ponctuelle

q placé en M où le potentiel est V(M). Alors l'énergie potentielle $\mathcal{E}_p = q \cdot V(M)$. Remarque : $\overrightarrow{F} = -\overrightarrow{grad} \ \mathcal{E}_p = -\overrightarrow{grad} \ (qV) = q \overrightarrow{E}$.

21.4.4 Équipotentielles

Définition : surface à V constant, or $\overrightarrow{E} = -\overrightarrow{grad} V$. D'après les propriétés du gradient, \overrightarrow{E} est perpendiculaire aux équipotentielles. \overrightarrow{E} est dirigé dans le sens des potentiels décroissants.

21.5 Équation de Poisson

21.5.1 Résultat

$$\Delta V + \frac{\rho}{\varepsilon_0} = 0$$

Ondes electromagnétiques

Introduction aux ondes électromagnétiques

23.1 Ondes

23.1.1 Définition

Une onde est la propagation d'un ébranlement sans transfert de matière, sans déformation et à vitesse constante (célérité) dans un milieu non dispersif. Une onde transporte de l'énergie.

Équation d'onde Dans un milieu non dispersif, la grandeur s(M, t) satisfait l'équation de D'Alembert.

$$\Delta s - \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2} = 0$$

c est la célérité de l'onde. Remarque 1 : $\Box = \left(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right)$ est appelé opérateur Dalembertien. Remarque 2 : s peut être scalaire comme vectoriel.

23.1.2 Solution générale

La forme générale est connue : (pour une dimension)

$$s(x,t) = f\left(t - \frac{x}{c}\right) + g\left(t + \frac{x}{c}\right)$$

où f et g sont deux fonctions d'une seule variable deux fois dérivables.

23.2 Cas des ondes electromagnétiques

Équation de propagation des champs

$$\Delta \overrightarrow{E} - \varepsilon_0 \cdot \mu_0 \cdot \frac{\partial^2 \overrightarrow{E}}{\partial t^2} \text{ et en fait } \varepsilon_0 \cdot \mu_0 = \frac{1}{c^2}$$
$$\Delta \overrightarrow{B} - \frac{1}{c^2} \cdot \frac{\partial^2 \overrightarrow{B}}{\partial t^2}$$

23.2.1 Propagation des potentiels

On se place dans la jauge de Lorentz.

$$\Delta \overrightarrow{A} - \frac{1}{c^2} \frac{\partial^2 \overrightarrow{A}}{\partial t^2} = 0$$
$$\Delta V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = 0$$

23.3 Des solutions particulières : les ondes planes progressives monochromatiques

23.3.1 Définition

Une onde est une onde plane progressive de direction \overrightarrow{u} (ou alors de vecteur d'onde $\overrightarrow{k} = k\overrightarrow{u}$) si $\forall t$ fixé, les champs \overrightarrow{E} et \overrightarrow{B} sont uniformes dans tout plan orthogonal à \overrightarrow{u} . Une onde plane progressive est de plus moonochromatique de pulsation ω si la dépendance temporelle est sinusoïdale de pulsation ω .

$$\vec{E} = \begin{vmatrix} E_{0_x} \cos\left(\omega \cdot \left(t - \frac{\vec{u} \cdot \vec{r}}{c}\right) + \varphi_{0_x}\right) \\ E_{0_y} \cos\left(\omega \cdot \left(t - \frac{\vec{u} \cdot \vec{r}}{c}\right) + \varphi_{0_y}\right) \\ E_{0_z} \cos\left(\omega \cdot \left(t - \frac{\vec{u} \cdot \vec{r}}{c}\right) + \varphi_{0_z}\right) \end{vmatrix} \text{ avec } \vec{r} = \vec{OM}$$

où $k = \frac{\omega}{c}$ dans le vide. Ainsi,

$$\vec{E} = \begin{vmatrix} E_{0_x} \cos\left(\omega \cdot t - \vec{k} \cdot \vec{r} + \varphi_{0_x}\right) \\ E_{0_y} \cos\left(\omega \cdot t - \vec{k} \cdot \vec{r} + \varphi_{0_y}\right) \\ E_{0_z} \cos\left(\omega \cdot t - \vec{k} \cdot \vec{r} + \varphi_{0_z}\right) \end{vmatrix}$$

23.3.2 Utilisation des complexes

$$\overrightarrow{\underline{E}} = \overrightarrow{\underline{E}_{0}} \cdot e^{j\left(\omega \cdot t - \overrightarrow{k} \cdot \overrightarrow{r}\right)} \text{ avec } \overrightarrow{\underline{E}_{0}} = \begin{vmatrix} \overline{\underline{E}_{0_{x}}} \\ \overline{\underline{E}_{0_{y}}} \\ \overline{\underline{E}_{0_{z}}} \end{vmatrix} = \begin{vmatrix} \overline{E}_{0_{x}} \cdot e^{j \cdot \varphi_{0_{x}}} \\ \overline{E}_{0_{y}} \cdot e^{j \cdot \varphi_{0_{y}}} \\ \overline{E}_{0_{z}} \cdot e^{j \cdot \varphi_{0_{z}}} \end{vmatrix}$$

Valable uniquement pour une onde plane progressive monochromatique :

Domaine temporel	Domaine complexe	Domaine temporel	Domaine complexe
$\frac{\partial}{\partial t}$	$\times j\cdot \omega$	$\frac{\partial}{\partial z}$	$\times (-j \cdot k_z)$
$\frac{\partial}{\partial r}$	$\times (-j \cdot k_x)$	$div \overrightarrow{A}$	$-j\cdot \overrightarrow{k}\wedge \overrightarrow{A}$
$\frac{\partial}{\partial u}$	$\times (-j \cdot k_y)$	$\overrightarrow{rot}\overrightarrow{A}$	$-j\cdot\overrightarrow{k}\wedge \overrightarrow{A}$
Uğ		$\Delta \underline{\overrightarrow{A}}$	$-k^2 \cdot \overrightarrow{A}$

23.3.3 Équation de Maxwell en notation complexe

$$-j \cdot \overrightarrow{k} \cdot \underline{\overrightarrow{E}} = 0$$
$$-j \cdot \overrightarrow{k} \cdot \underline{\overrightarrow{B}} = 0$$
$$\overrightarrow{k} \wedge \underline{\overrightarrow{E}} = \omega \cdot \underline{\overrightarrow{B}}$$
$$\overrightarrow{k} \wedge \underline{\overrightarrow{B}} = -\frac{\omega}{c^2} \cdot \underline{\overrightarrow{E}}$$

23.3.4 Relation de dispersion

Relation de dispersion d'une onde électromagnétique monochromatique dans le vide :

$$k^2 = \frac{w^2}{c^2}$$

23.3.5 Structure de l'onde plane progressive monocrhomatique

$$\underline{\overrightarrow{B}} = \frac{\overrightarrow{k} \wedge \underline{\overrightarrow{E}}}{\omega} = \frac{\overrightarrow{u} \wedge \underline{\overrightarrow{E}}}{c} \text{ pour une OPPM}$$
$$\underline{\overrightarrow{E}} = c \cdot \underline{\overrightarrow{B}} \wedge \overrightarrow{u}$$
$$\|\overrightarrow{B}\| = \frac{\|\overrightarrow{E}\|}{c}$$

23.3.6 Vitesse de phase d'une onde plane progressive monochromatique

Définitio : Soit une onde plane progressive monochromatique. La vitesse de phase v_{φ} de cette onde est la vitesse à laquelle un observateur doit se déplacer pour voir une phase de l'onde constante.

$$v_{\varphi} = \frac{\omega}{k}$$
 pour une OPPM

Si de plus cette onde plane progressive monochromatique se déplace dans le vide,

$$v_{\varphi} = \frac{\omega}{k} = c = \text{constante}$$

On dit que le vide n'est pas dispersif.

23.4 Aspect énergétique

23.4.1 Densité d'énergie

Équipartition entre $u_{\rm el}$ et $u_{\rm ma}$:

$$u_{\rm em} = \varepsilon_0 E^2$$

23.4.2 Vecteur de Poynting

97

$$\overrightarrow{\pi} = \varepsilon_0 \cdot c \cdot \overrightarrow{u}$$

23.4.3 Vitesse de propagation de l'énergie

On note v_e la vitesse de propagation de l'énergie. $d\mathcal{E}$ contenu dans le cylindre de base S et de hauteur $v_e \cdot dt$ de volume $S \cdot v_e \cdot dt$,

$$d\mathcal{E} = S \cdot v_e \cdot dt \cdot \varepsilon_0 \cdot E^2$$

Ici, $v_e = c$.

23.4.4 Intensité ou éclairement (optique)

L'éclairement désgine la puissance surfacique moyenne. Pour une onde électromagnétique, c'est :

 $\|\langle \overrightarrow{\pi} \rangle \|$

Pour une onde plane progressive monochromatique,

$$\|\langle \overrightarrow{\pi} \rangle\| = \frac{1}{2} \cdot \varepsilon_0 \cdot c \cdot E_{\mathrm{m}}^2 = I = \mathcal{E}$$

Polarisation des ondes planes progresives monochromatiques

24.1 Définition

Idée : pour une onde plane progressive monochromatique, si \overrightarrow{u} et \overrightarrow{E} sont connus, tout est connu.

À une onde plane progressive monochromatique, on va associer un type de polarisation suivant la nature du mouvement de \overrightarrow{E} dans un plan orthogonal à \overrightarrow{u} vu par un observateur qui voit l'onde arriver sur lui.

24.2 Cas général

On se place dans le cas où $\overrightarrow{u} = \overrightarrow{u_z}$. Alors

$$\overrightarrow{E} = \begin{vmatrix} E_{0_x} \cos\left(\omega \cdot t - k \cdot z + \varphi_{0_x}\right) \\ E_{0_y} \cos\left(\omega \cdot t - k \cdot z + \varphi_{0_y}\right) \\ 0 \end{vmatrix} \text{ avec } E_{0_x}, E_{0_y} > 0$$

On observe la figure obtenue en mode XY.

Ici, on raisonne à z fixé. On est dans le même cas de figure qu'en TP d'électricité avec les oscilloscopes.

On dit qu'on a une polarisation elliptique qualifiée de droite (sens horaire) ou gauche (sens trigo) suivant le sens de parcours de l'ellispe tel qu'il est vu par l'observateur.

24.3 Cas particuliers

 Si φ_{0_x} ≡ φ_{0_y}[2π], on obtient une droite qui fait un angle α avec l'axe des X. On parle de polarisation rectiligne. Par ailleurs :

$$\frac{E_y}{E_x} = \frac{E_{0_y}}{E_{0_x}} = \tan \alpha = \text{constante}$$

- Si $\varphi_{0_y} \equiv \varphi_{0_x} + \pi [2\pi]$, on obtient aussi une polarisation rectiligne.
- Si $\varphi_{0_y} \equiv \varphi_{0_x} + \frac{\pi}{2} [2\pi]$. On obtient une polarisation elliptique.

Les axes de l'ellipse sont parallèles à Ox et à Oy. Si de plus, $E_{0_x} = E_{0_y}$ (toujours dans le cas de la quadrature), on obtient une polarisation circulaire.

24.4 Quelques décompositions

On peut décomposer les polarisations de différentes façons. Elliptique quelconque qui devient la superposition de deux polarisations rectilignes orthogonales entre-elles.

$$\begin{array}{c} E_{0_x}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ E_{0_y}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_y}\right) \end{array} = \left| \begin{array}{c} E_{0_x}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ 0 \end{array} \right| + \left| \begin{array}{c} 0 \\ E_{0_y}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_y}\right) \end{array} \right|$$

Polarisation rectiligne suivant Ox:

$$\begin{array}{c} E_{0_x}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ 0 \\ 0 \end{array} = \left| \begin{array}{c} \frac{1}{2}\cdot E_{0_x}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ \frac{1}{2}\cdot E_{0_x}\sin\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ 0 \end{array} \right| + \left| \begin{array}{c} \frac{1}{2}\cdot E_{0_x}\cos\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ -\frac{1}{2}\cdot E_{0_x}\sin\left(\omega\cdot t - k\cdot z + \varphi_{0_x}\right) \\ 0 \end{array} \right|$$

24.5 Polariseur, loi de Malus

24.5.1 Polariseur

Définition : un polariseur est un dispositif possédant une direction privilégiée dite direction de transmission : il ne laisse passer que la composante du champ électrique de l'onde parallèle à cette direction et élimine la composante orthogonale.

En sortie, la lumière est polarisée parallèlement à la direction de transmission. On se sert de polariseur pour analyser la lumière.

24.5.2 Loi de Malus

Soit une onde incidente polarisée rectilignement qui arrive sur un polariseur. Soit θ l'angle entre la direction de transmission et la direction de polarisation. Soit I_0 l'intensité de l'onde incidente et I l'intensité de l'onde en sortie du polariseur.

$$I = I_0 \cdot \cos^2 \theta$$