Chapitre 2 : compléments d'aglèbre

19/9/2011

1 Compléments sur les groupes

Définition : Structure de groupe : Soit G un ensemble et * une loi de composition interne sur G.

On dit que (G, *) a une structure de groupe lorsque :

- * est une lci sur G;
- * est associative;
- * admet un élément neutre $e \in G$;
- tout élément $x \in G$ doit admettre un symétrique pour * dans G.

Si de plus, * est commutative, on dira que (G, *) est un groupe commutatif ou abélien.

Caractérisation des sous-groupes : Soit (G,*) un groupen et $H\subset G.$

(H,*) sous-groupe de (G,*) si et seulement si :

- $1_G \in H$
- $\forall x \in H, x^{-1} \in H$
- $\forall x, y \in H, x * y \in H$.

OU

- $1_G \in H$
- $\forall x, y \in H, x * y^{-1} \in H$

Définition / **Théorème : groupe produit :** Soit (G,*) et (G', \bullet) deux groupes (resp. commutatifs).

En définissant dans $G \times G'$ la loi \square par :

$$\forall (a,b) \in G \times G', \ \forall (c,d) \in G \times G', \ (a,b) \square (c,d) = (a*c,b \bullet d)$$

alors $(G \times G', \square)$ est un groupe produit (resp. commutatif).

Définition : sous-goupe engendré : Soit (G, *) un groupe et A une partie de G. On appelle sous-groupe engendré par A, noté Gr(A), le plus petit sous-groupe (au sens de l'inclusion) contenant A.

Définition : relation d'équivalence : Soit \mathcal{R} une relation (binaire) définie sur un ensemble E. On dit que \mathcal{R} est une relation d'équivalence si elle est :

- réflexive : $\forall a \in E, \ a \mathcal{R} a$;
- symétrique : $\forall (a,b) \in E^2$, si $a\mathcal{R}b$ alors $b\mathcal{R}a$;
- transitive : $\forall (a, b, c) \in E^3$, si $a \mathcal{R} b$ et $b \mathcal{R} c$, alors $a \mathcal{R} c$.

Définition : classes d'équivalences : Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Soit $x \in E$. La classe d'équivalence de x est définie par :

$$Cl(x) = \{ y \in E \mid y \mathcal{R}x \}$$

Propriétés:

- $Cl(x) = Cl(y) \Leftrightarrow [x\mathcal{R}y]$
- $\forall (x,y) \in E^2$ ou bien Cl(x) = Cl(y) ou bien $Cl(x) \cap Cl(y) = \emptyset$
- L'ensemble des classes d'équivalences forme une partition de E, ce qui signifie qu'on obtient un ensemble de parties de E tel que :
 - aucune n'est vide;
 - deux disctinctes sont nécessairement disjointes;
 - leur réunion est égale à E.

Définition : relation de congruence modulo n $(n \in \mathbb{N})$: On définit sur \mathbb{Z} la relation de congruence modulo n par : $\forall (a,b) \in \mathbb{Z}^2 : a \equiv b[n] \Leftrightarrow n|(a-b) \Leftrightarrow \exists k \in \mathbb{Z}/a = b + kn$.

Définition : L'ensemble des classes d'équivalence s'appelle l'ensemble quotient de E par \mathscr{R} et est noté E/\mathcal{R} .

Proposition préliminaire : Soit $a, b \in \mathbb{Z}$, soit $n \in \mathbb{N}$. Si $a \equiv a'[n]$ et $b \equiv b'[n]$, alors $a+b \equiv a'+b'[n].$

Définition: Soient $\overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$. $\overline{a} \oplus \overline{b} = \overline{a+b}$.

Théorème : $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe commutatif.

Propriétés:

- $\overline{1}$ est toujours générateur de $\mathbb{Z}/n\mathbb{Z}$.
- \overline{k} est toujours générateur de $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow \overline{1} \in Gr(\overline{k}) \Leftrightarrow \exists u \in \mathbb{Z}$ tel que $\overline{1} = u\overline{k}$.

Théorème : Soient $n \in \mathbb{N}$ et $k \in \mathbb{Z}$. $[\overline{k}]$ est générateur de $\mathbb{Z}/n\mathbb{Z}$] $\Leftrightarrow [k \wedge n = 1]$.

Lemme fondamental : Les sous-groupes de \mathbb{Z} s'écrivent de la forme $n\mathbb{Z}$ où $n \in \mathbb{N}$.

Théorème : Soit (G,\cdot) un groupe de neutre e. Soit $a\in G$. Soit Gr(a) le groupe engendré par a (des puissances de a). Alors :

- ou bien $Gr(a) \simeq \mathbb{Z}$: on dit que a est d'ordre infini.
 - $Card(Gr(a)) = \infty;$

 - $-a^{n} = e \Leftrightarrow n = 0;$ $Gr(a) = \{\dots, a^{-2}, a^{-1}, e, a^{1}, a^{2}, \dots\}.$
- ou bien $Gr(a) \simeq \mathbb{Z}/n\mathbb{Z}$ avec $n \in \mathbb{N}^*$: on dit que a est d'ordre n.
 - Card(Gr(a)) = n;

 - $-n = Min(\{k \in \mathbb{N}^*/a^k = 0\});$ $Gr(a) = \{e, a^1, a^2, \dots, a^{n-1}\}.$

Groupes monogène, cyclique : Un groupe G est dit :

- monogène s'il existe $a \in G$ tel que G = Gr(a);
- cyclique s'il est monogène et fini.

2 Compléments sur les anneaux

Définition : anneau : Soit A un ensemble et \oplus et * deux lois de composition interne sur A. On dit que $(A, \oplus, *)$ a une structure d'anneau lorsque :

- (A, \oplus) est un groupe commutatif;
- * est associative;
- * admet un élément neutre;
- * est distributive par rapport à \oplus : $\forall x, y, z \in A$, $x * (y \oplus z) = (x * y) \oplus (x * z)$ et $(y \oplus z) * x = (y * x) \oplus (z * x)$.

Si de plus * est commutative, on dit que $(A, \oplus, *)$ est un anneau commutatif.

Proposition : caractérisation des sous-anneaux : Soit $(A, +, \cdot)$ un anneau et $A' \subset A$. $(A', +, \cdot)$ sous-anneau de $(A, +, \cdot)$ si et seulement si :

- $1_A \in A'$;
- $\forall a, b \in A'$,
 - 1. $a + (-b) \in A'$;
 - $2. \ a \cdot b \in A'.$

Morphisme d'anneau : Soit $(A, +, \cdot)$ et (A', \oplus, \otimes) deux anneaux. Soit $f: A \to A'$ une application. On dit que f est un morphisme de l'anneau $(A, +, \cdot)$ dans l'anneau (A', \oplus, \otimes) lorsque :

- $f(1_A) = 1_{A'}$;
- $\forall a, b \in A$,
 - 1. $f(a+b) = f(a) \oplus f(b)$;
 - 2. $f(a \cdot b) = f(a) \otimes f(b)$.

Théorème : Soit $(A, +, \times)$ un anneau.

Soit A^* l'ensemble des éléments inversibles i.e. « x inversible » $\Leftrightarrow \exists x' \in A$ tel que $x \times x' = 1_A = x' \times x$, alors (A^*, \times) est un groupe appelé groupe des inversibles.

Définition : idéal d'un anneau commutatif : Soit $(A, +, \times)$ un anneau commutatif. Soit \mathcal{I} une partie de A. On dit que \mathcal{I} est idéal de A si :

- $(\mathcal{I}, +)$ est un sous-groupe de (A, +);
- « sur-stabilité » : $\forall a \in A, \ \forall x \in I, \ a \times x \in I$.

Propriété : $[\mathcal{I} = A] \Leftrightarrow [1_A \in \mathcal{I}].$

Définition : notion de divisibilité : Soit $(A, +, \times)$ un anneau commutatif. Soient $a, b \in A$. On dit que b divise a ou que a est un multiple de b que l'on écrit b|a lorsque : $\exists k \in A$ tel que $a = b \times k$ ou encore $a \in bA$.

Propriété : Soient a et b deux éléments d'un anneau A. $b|a \Leftrightarrow aA \subset bA$.

Propriété : noyau d'un morphisme d'anneau : Soit Φ un morphisme d'anneau de A vers A'. Soit Ker $\Phi = \{x \in A / \Phi(x) = 0_{A'}\}$. Alors Ker Φ est un idéal de l'anneau A.

Proposition: intersection et somme de deux idéaux: Soient \mathcal{I} et \mathcal{J} deux idéaux d'un anneau A. Alors:

- $\mathcal{I} \cap \mathcal{J}$ est un idéal de A. C'est le plus grand idéal (au sens de l'inclusion) inclus dans \mathcal{I} et dans \mathcal{J} .
- $\mathcal{I} + \mathcal{J} = \{a + b \mid a \in \mathcal{I}, b \in \mathcal{J}\}$ est un idéal de A, c'est le plus petit idéal (au sens de l'inclusion) contenant à la fois \mathcal{I} et \mathcal{J} et doonc $\mathcal{I} \cup \mathcal{J}$.

Application 1 : arithmétique dans \mathbb{Z} :

PPCM: $m = PPCM(a, b) = a \lor b$ si et seulement si $\begin{vmatrix} m \in \mathbb{N} \\ m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z} \end{vmatrix}$ **PGCD**: $d = PGCD(a, b) = a \land b$ si et seulement si $\begin{vmatrix} d \in \mathbb{N} \\ d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} \end{vmatrix}$

Application 2 : arithmétique dans $\mathbb{K}[X]$:

Théorème de base : Les seuls idéaux de $\mathbb{K}[X]$ s'écrivent, avec $P \in \mathbb{K}[X]$:

$$P \cdot \mathbb{K}[X] = \{P \times A / A \in \mathbb{K}[X]\} = (P)$$

PPCM:

- si A = 0 ou B = 0, le PPCM de A et B est 0;
- sinon, $M = A \vee B$ est l'unique polynôme unitaire tel que $(A) \cap (B) = (M)$.

Ceci traduit que $\forall P \in \mathbb{K}[X], \ \begin{cases} A \mid P \\ B \mid P \end{cases} \Leftrightarrow (A \vee B) \mid P.$

PGCD:

- si A = 0 et B = 0, le PGCD de A et B est 0;
- sinon, $D = A \wedge B$ est l'unique polynôme unitaire tel que (A) + (B) = (D).

Ceci traduit que $\forall \Delta \in \mathbb{K}[X], \left\{ \begin{array}{l} \Delta | A \\ \Delta | B \end{array} \Leftrightarrow \Delta | (A \vee B). \right.$

Compatibilité de la loi × avec la relation de congruence :

Propriété : Soit $n \in \mathbb{N}$, $\forall (a, b, c, d) \in \mathbb{Z}^4$. Si $a \equiv b[n]$ et $c \equiv d[n]$, alors $a \times c \equiv b \times d[n]$.

Corolaire: Soit $n \in \mathbb{N}$. Soient $(a, b) \in \mathbb{Z}^2$ et $k \in \mathbb{Z}$. Si $a \equiv b[n]$, alors $a^k \equiv b^k[n]$.

Conséquence : On n'a donc aucun problème à définir dans $\mathbb{Z}/n\mathbb{Z} \ \overline{a} \otimes \overline{b} = \overline{a \times b}$.

Autre propriété intéressante : $\begin{bmatrix} a \equiv b[m] \\ a \equiv b[n] \\ m \land n = 1 \end{bmatrix} \Rightarrow \begin{bmatrix} a \equiv b \, [mn] \, \end{bmatrix}$

Théorème : éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$ pour \times :

 $[\overline{k} \text{ est inversible dans } \mathbb{Z}/n\mathbb{Z} \text{ pour } \times] \Leftrightarrow [k \wedge n = 1]$

Théorème : l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$: $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif.

- Il est intègre si $n \in \mathbb{P} \cup \{0\}$.
- C'est un corps si $n \in \mathbb{P}$.

Définition: la fonction indicatrice d'Euler: On appelle fonction indicatrice d'Euler la fonction $\Phi: \mathbb{N} \to \mathbb{N}$ définie par : $\forall n \in \mathbb{N}, \ \Phi(n) = Card((\mathbb{Z}/n\mathbb{Z})^*).$

4

Théorème : théorème de factorisation : Soit Ψ un morphsime d'anneau de \mathbb{Z} sur A. Soit $Ker \ \Psi = n\mathbb{Z}$ (puisque c'est un sous-groupe de $(\mathbb{Z}, +)$ / un idéal de $(\mathbb{Z}, +, \times)$). Soit S : $\left\{ \begin{array}{l} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \\ k \mapsto \overline{k} \end{array} \right.$ Alors il existe un morphisme $\stackrel{\sim}{\Psi}$ tel que $\stackrel{\sim}{\Psi}$: $\mathbb{Z}/n\mathbb{Z} \to A$ et $\Psi = \stackrel{\sim}{\Psi} \circ S$.

Application 1 : caractéristique d'un corps :

Définition : caractéristique d'un corps : La caractéristique d'un corps K est :

- égale à 0 si $\forall m \in \mathbb{Z}, m \cdot 1_K \Leftrightarrow m = 0$;
- égale à $Min\{m \in \mathbb{N}^* | m \cdot 1_K = 0_K\}$ sinon.

C'est aussi le nombre q tel que $Ker\ \Psi=q\mathbb{Z}$ pour $\Psi:\left\{ \begin{array}{l} \mathbb{Z}\to K\\ m\mapsto m\cdot 1_K \end{array} \right.$

Propriétés:

- 1. Si K est un corps de caractéristique $q, \forall n \in \mathbb{Z}, m \cdot 1_K = 0_K \Leftrightarrow m \in q\mathbb{Z}, m \in Ker \Psi$;
- 2. Si $q \neq 0$, $q \in \mathbb{P}$.

Application 2 : théorème chinois : Soient $m, n \in \mathbb{N}$ tels que $m \wedge n = 1$, $(a, b) \in \mathbb{Z}^2$. Le système d'équation $\begin{cases} x \equiv a[m] \\ x \equiv b[n] \end{cases}$ où x est une inconnue entière admet au moins une solution x_0 . L'ensemble des solutions est alors $S = x_0 + (mn)\mathbb{Z}$.