CHAPITRE 3 : COMPLÉMENTS D'AGLÈBRE LINÉAIRE

27/9/2011

1 Familles génératrices, libres, bases

Définition 1 : Soit $(\lambda_i)_{i \in I}$ une famille de scalaires (éléments d'un corps \mathbb{K}).

- On dit que c'est une famille de scalaire presque tous nuls si tous les scalaires sont nuls sauf un nombre fini d'entre eux.
- L'ensemble $I' = \{i \in I | \lambda_i \neq 0\}$ est appelé le support de la famille $(\lambda_i)_{i \in I}$.

Définition 2 : Soit $(u_i)_{i\in I}$ une famille quelconque de vecteurs d'un \mathbb{K} -espace vectoriel E. On appelle combinaison linéaire de la famille de vecteurs $(u_i)_{i\in I}$ tout vecteur $u\in E$ qui s'écrit $u=\sum_{i\in I}\lambda_iu_i$ où $(\lambda_i)_{i\in I}$ est une famille de scalaires presque tous nuls.

Définition 3: Soit $(x_i)_{i\in I}$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E.

1. $(x_i)_{i\in I}$ est dite génératrice si tout vecteur de E s'écrit comme combinaison linéaire de vecteurs de la famille $(x_i)_{i\in I}$ i.e. $\forall x\in E,\ \exists (x_i)_{i\in I}\in\mathbb{K}^I$ presque tous nuls tels que x=I

$$\sum_{i \in I} \lambda_i x_i \text{ ou encore } \exists (i_1, \dots, i_n) \in I^n \text{ tel que } x = \sum_{j=1}^n \lambda_{i_j} x_{i_j}.$$

2. $(x_i)_{i\in I}$ est dite libre - les x_i sont linéairement indépendants - si la seule combinaison linéaire des x_i égale au vecteur nul est celle pour laquelle tous les coefficients sont nuls

i.e.
$$\forall (\lambda_i)_{i \in I} \in \mathbb{K}^I$$
 presque tous nuls, $\left[\sum_{i \in I} \lambda_i x_i = 0_E\right] \Rightarrow [\forall i \in I, \lambda_i = 0].$

- 3. $(x_i)_{i\in I}$ est dite liée les x_i sont linéairement dépendants si elle n'est pas libre.
- 4. C'est une base si elle est à la fois génératrice et libre.

Propriété importante : Si \mathcal{B} est une base de E, tout vecteur de E s'écrit de manière unique comme combinaison linéaire de vecteurs de \mathcal{B} .

Quelques rappels de la dimension fini :

- Un espace vectoriel de dimension fini est un espace vectoriel admettant une famille génératrice finie.
- Théorème fondamental : dans un espace vectoriel de dimension finie, toutes les bases ont le même nombre d'éléments, appelée la dimension de E noté dim $_{\mathbb{K}}$ E=n.
- Si G est génératrice, $Card(G) \ge n$.
- Si L est libre, $Card(L) \leq n$.
- Si \mathcal{B} est libre ou génératrice, et si $Card(\mathcal{B}) = n$ alors \mathcal{B} est une base.
- Si Card(L) > n, L est liée. Si Card(L) < n, L n'est pas génératrice donc $Vect(L) \neq E$.
- Théorème de la base incomplète : si L est libre et si Card(L) = p < n, il existe un (n-p) vecteurs u_{n-p}, \ldots, u_n tels que $L@(u_{n-p}, \ldots, u_n)$ (concaténation) sera une base de E.

Proposition : Soit $\mathcal{B} = (e_i)_{i \in I}$ une base de E. Soit $\mathcal{F} = (f_i)_{i \in I}$ une famille de vecteurs de F. Alors

- il existe une et une seule application $\varphi: E \to F$ telle que $\forall i \in I, \varphi(e_i) = f_i$;
- φ bijective $\Leftrightarrow (f_i)_{i \in I}$ est une base de E.

Proposition : espace vectoriel produit : Soit $(E, +, \cdot)$ et (F, \oplus, \bullet) deux \mathbb{K} -espaces vectoriels. On définit sur le produit $E \times F$

- une addition : $\forall (x,y), (x',y') \in (E \times F)^2, (x,y) \boxplus (x',y') = (x+x',y \oplus y');$
- un produit externe : $\forall (x,y) \in E \times F, \forall \alpha \in \mathbb{K}, \alpha \circledast (x,y) = (\alpha \cdot x, \alpha \bullet y).$

Alors $(E \times F, \boxplus, \circledast)$ est un \mathbb{K} -espace vectoriel. De plus, si E et F sont de dimension finie, $\dim(E \times F) = \dim E + \dim F$.

Généralisation : Si $(E_i)_{i \in [1,n]}$ est une famille de K-espaces vectoriels de dimension finie,

$$\prod_{i=1}^{n} E_i \text{ est un } \mathbb{K}\text{-espace vectorial de dimension finie avec } \dim\left(\prod_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \dim E_i.$$

2 Structure d'algèbre

Définition 1 : Soit A un ensemble, + et \times deux lois de compositions internes sur A et \cdot une loi de composition externe sur A. Si

- 1. $(A, +, \times)$ est un anneau (resp. commutatif, resp. intègre);
- 2. $(A, +, \cdot)$ est un K-espace vectoriel (K étant un coprs);
- 3. $\forall \alpha \in \mathbb{K}, \forall x, y \in A, \alpha \cdot (x \times y) = (\alpha \cdot x) \times y = x \times (\alpha \cdot y)$

On dit que $(A, +, \times, \cdot)$ est une \mathbb{K} -algèbre (resp. commutative, resp. intègre).

Définition 2 : Soit $(A, +, \times, \cdot)$ une algèbre. On dit que $(A', +, \times, \cdot)$ est sous algèbre de A si A' est à la fois un sous-anneau et un sous-espace vectoriel de A. Autrement dit :

- \bullet $A' \subset A$;
- $\forall x, y \in A', \forall \alpha \in \mathbb{K},$
 - 1. $x + y \in A'$;
 - 2. $x \times y \in A'$;
 - 3. $\alpha \cdot y \in A'$;
- $1_A \in A'$.

Définition 3 : Soit $\varphi : A \to B$ où A et B sont deux \mathbb{K} -algèbres. On dit que φ est un morphisme d'algèbre si c'est à la fois un morphisme d'anneau et une application linéaire. Autrement dit : $\forall x, y \in A, \forall \alpha \in \mathbb{K}$,

- $\varphi(x+y) = \varphi(x) + \varphi(y)$;
- $\varphi(x \times y) = \varphi(x) \times \varphi(y)$;
- $\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$;
- $\varphi(1_A) = 1_{A'}$.

3 Somme et somme directe de sous-espace vectoriel

Rappels de Sup sur la somme de sous-expaces vectoriels : Si F et G sont deux sous-espace vectoriels de E,

- $F \cap G$ est un sous-espace vectoriel de E (mais non $F \cup G$ a priori);
- $F + G = \{x + y \mid (x, y) \in F \times G\}$ est un sous-espace vectoriel, le plus petit sous-espace vectoriel contenant F et G et donc $F \cup G$;
- F+G est une somme directe si $F\cap G=\{0_E\}$ (attention: faux à partir de 3 sous-espaces
- $E = F \oplus G$ i.e. F et G sont supplémentaires \Leftrightarrow $\begin{cases} E = F + G \\ F \cap G = \{0_E\} \end{cases} \Leftrightarrow \begin{cases} \dim E = \dim F + \dim G \\ F \cap G = \{0_E\} \end{cases}$

Définition 1 : somme de n sous-epsaces vectoriels : Soient $(E_i)_{i \in [\![1,n]\!]}$ une famille de nsous-espaces vectoriels de E. On appelle somme de ces sous-espaces vectoriels le sous-espace vectoriel $\sum_{i=1}^{n} E_i = \left\{ \sum_{i=1}^{n} x_i / \forall i \in [1, n], x_i \in E_i \right\}.$

Définition 2: La somme $\sum_{i=1}^{n} E_i$ des n sous-espaces vectoriels E_i est dite directe si elle vérifie l'une des deux propriétés équivalentes suivantes :

1.
$$\forall (x_1, \dots, x_n) \in \prod_{i=1}^n E_i$$
, si $\sum_{i=1}^n x_i = 0_E$ alors $\forall i \in [1, n], x_i = 0_E$;

2.
$$\forall x \in \sum_{i=1}^{n} E_i, \exists ! (x_1, \dots, x_n) \in \prod_{i=1}^{n} E_i \text{ tel que } x = \sum_{i=1}^{n} x_i.$$

Théorème 1 : Soit $(E_i)_{i \in [1,n]}$ une famille de n sous-espaces vectoriels.

$$\left[\text{La somme } \sum_{i=1}^{n} E_i \text{ est directe } \right] \Leftrightarrow \left[\dim \left(\sum_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} (\dim E_i)\right]$$

Théorème 2 : Soient E_1, \ldots, E_n n sous-espaces vectoriels de E. Si la somme $\bigoplus E_i$ est directe,

$$\left[E = \bigoplus_{i=1}^{n} E_i\right] \Leftrightarrow \left[\dim E = \sum_{i=1}^{n} \dim E_i\right]$$

Rappels de Sup sur les projecteurs : Soient F et G deux sous-espaces vectoriels supplémentaires de E i.e. $F \oplus G = E$. Ainsi, $\forall x \in E, \exists ! (y, z) \in F \times G$ tel que x = y + z.

- Projection de E sur F de direction $G: p: \begin{cases} E \to E \\ x = y + z \mapsto y \end{cases}$; Projection de E sur G de direction $F: q: \begin{cases} E \to E \\ x = y + z \mapsto z \end{cases}$;
- $[p \in \mathcal{L}(E) \text{ et } p \circ p = p] \Leftrightarrow [p \text{ est un projecteur}];$
- $p \circ q = 0_{\mathcal{L}(E)} = q \circ p$ $p + q = Id_E;$
- $Im \ p = F$ $Ker \ p = G$.

Définition : Soit n sous-espaces vectoriels de E tels que $E = \bigoplus_{i \in I} E_i$ (*). La projection de E

sur E_j relativement à la décomposition (\star) est la projection de E sur E_j de direction $\bigoplus E_i$.

Autrement dit,
$$p: \left\{ \begin{array}{c} E \longrightarrow E \\ x = \sum_{i=1}^{n} x_i \mapsto x_j \end{array} \right.$$

Propriétés:

- $p_j \in \mathcal{L}(E)$ et $p_j \circ p_j = p_j$. p_j est donc un projecteur; $\text{si } i \neq j, \, p_i \circ p_j = 0_{\mathcal{L}(E)} = p_j \circ p_i;$
- $\bullet \sum_{j=1} p_j = Id_E;$
- $Im p_j = E_j$ $Ker p_j = \bigoplus_{\substack{i=1 \ i \neq j}}^n E_i$.

Noyau et image d'une application linéaire : 4

Théorème 1: Soit $f \in \mathcal{L}(E, F)$, H sous-espace vectoriel de E. Soit $\tilde{f} : \begin{cases} H \to Im \ f \\ h \mapsto f(h) \end{cases}$.

 $\stackrel{\sim}{f}$ est un isomorphisme si et seulement si H est un supplémentaire de Ker~f.

Théorème 2 : théorème du rang : Soit E un \mathbb{K} -espace vectoriel de dimension finie, F un \mathbb{K} -espace vectoriel. Soit $f \in \mathcal{L}(E, F)$.

Alors $Im\ f$ est de dimension finie et $\dim E = \dim(Im\ f) + \dim(Ker\ f)$.

Théorème 3 : Si E et F sont deux espaces vectoriels de même dimension finie n et si $f \in \mathcal{L}(E, F),$

f isomorphisme $\Leftrightarrow rg(f) = n \Leftrightarrow f$ surjective $\Leftrightarrow Ker f = \{0_E\} \Leftrightarrow f$ injective.

Lemme: Si G et H sont deux supplémentaires d'un même sous-espace vectoriel F, alors ils ont même dimension.

Définition : Si un sous-espace vectoriel F de E admet un supplémentaire G de dimension finie, on appelle codimension de F la dimension de G noté codim F. Si $E = F \oplus G$, codim $F = \dim G$.

Théorème du rang généralisé : Soient E et F deux \mathbb{K} -espaces vectoriels dont l'un au moins est de dimension finie. Soit $f \in \mathcal{L}(E, F)$. Alors

- Im f est de dimension finie;
- Ker f est de codimension finie;
- $\operatorname{codim}(Ker\ f) = \dim(Im\ f)$.

Théorème : interpolation de Lagrange : Soient x_1, \ldots, x_n n réels distincts. Soit pour $i \in [1, n],$

$$L_i = \frac{\prod\limits_{\substack{j=1\\j\neq i}}^{n}(X - x_j)}{\prod\limits_{\substack{j=1\\j\neq i}}^{n}(x_i - x_j)}$$

Alors:

- la famille $(L_i)_{i \in [1,n]}$ est une base de $\mathbb{K}_{n-1}[X]$ dite de Lagrange relative au n-uplet (x_1,\ldots,x_n) ;
- le problème d'interpolation i.e. chercher $P \in \mathbb{R}_{n-1}[X]$ tel que $\forall i \in [1, n], P(x_i) = y_i$ où $(y_1, \dots, y_n) \in \mathbb{R}^n$ admet une et une seule solution $P = \sum_{i=1}^n y_i L_i$.

5 Dualité

Définition : hyperplan : On appelle hyperplan d'un K-espace vectoriel tout sous-espace vectoriel de codimension 1.

Ainsi, $[H \text{ est un hyperplan}] \Leftrightarrow [\exists a \in E \setminus \{0_E\} \mid H \oplus Vect(a) = E].$

Théorème 1 : Soit $\varphi \in \mathcal{L}(E, \mathbb{K})$ i.e. une forme linéaire avec $\varphi \neq \mathcal{O}$ l'application nulle. Alors

- $Ker \varphi$ est un hyperplan H;
- si $\psi \in \mathcal{L}(E, \mathbb{K})$ s'annule sur H, alors $\exists \alpha \in \mathbb{K} \mid \psi = \alpha \cdot \varphi$.

Théorème 2 : Tout hyperplan est le noyau d'une forme linéaire non nulle.

Définition : Soit E un \mathbb{K} -espace vectoriel. On appelle dual de E que l'on note souvent E^* l'ensemble $\mathcal{L}(E,\mathbb{K})$ i.e. l'ensemble des formes linéaires de E sur \mathbb{K} .

Proposition: $\forall a \in E \setminus \{0_E\}, \exists \varphi \in \mathcal{L}(E, \mathbb{K}) \mid \varphi(a) = 1.$

Corollaire: L'ensemble $\{x \in E \mid \forall \varphi \in \mathcal{L}(E, \mathbb{K}), \varphi(x) = 0_{\mathbb{K}}\} = \{0_E\}.$

Définition : base dual d'une base \mathcal{B} de E : Soit $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. On appelle base duale de E la base $\mathcal{B}^* = (e_1^*, \ldots, e_n^*)$ du dual E^* où $\forall i \in [\![1, n]\!], e_i^*$ est défini par $\forall j \in [\![1, n]\!], e_i^*(e_j) = \delta_{i,j}$.

Théorème : $(e_1^{\star}, \dots, e_n^{\star})$ est bien une base du dual E^{\star} .

Conséquence : relation de dualité : Soit (e_1, e_n) une base de E et (e_1^*, \ldots, e_n^*) sa base duale. $\forall x \in E, \ x = e_1^*(x)e_1 + \ldots + e_n^*(x)e_n, \ \forall \varphi \in E^*, \ \varphi(e_1)e_1^* + \ldots + \varphi(e_n)e_n^*.$

Théorème : base antéduale : À toute base \mathcal{B}' de E^* est associée une et une seule base \mathcal{B} de E dont \mathcal{B}' est la duale. \mathcal{B} et appelée la base antéduale de \mathcal{B}' .

Théorème 1 : Soit F un sous-espace vectoriel de E de dimension finie avec dim F = p, dim E = n. Les formes linéaires sur E qui s'annulent sur F constituent un sous-espace vectoriel de E^* de dimension n - p.

Théorème 2 : Si $(\varphi_1, \ldots, \varphi_q)$ est une famille libre de E^* , alors $F = \bigcap_{i=1}^q Ker \ \varphi_i$ est un sousespace vectoriel de dimension n-q.

De plus, si $\varphi \in E^*$, $[\varphi \text{ s'annule sur } F] \Leftrightarrow \left[\exists (\lambda_1, \dots, \lambda_q) \in \mathbb{K}^q / \varphi = \sum_{i=1}^q \lambda_i \varphi_i \right].$

6 Rappels et compléments de calcul matriciel

Définition : trace : Soit $M \in \mathcal{M}_n(\mathbb{K})$. $M = (a_{i,j})_{i,j \in [\![1,n]\!]}$. On appelle trace de M la somme de ses éléments diagonaux : $tr(M) = \sum_{i=1}^n a_{i,i}$.

Propriétés:

- 1. $tr: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ est linéaire.
- 2. $\forall A, B \in \mathcal{M}_n(\mathbb{K}), tr(A \times B) = tr(B \times A).$
- 3. Si A et B sont des matrices semblables, tr(A) = tr(B).

Rappels:

- Deux matrices A et B sont dites semblables s'il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$.
- Si E est un \mathbb{K} -espace vectoriel de dimension n, de base $\mathcal{B} = (e_1, \dots, e_n)$, toute matrice A est la matrice d'un endomorphisme de E dans \mathcal{B} i.e. $A = M_{\mathcal{B}}(u)$ où $u \in \mathcal{L}(E)$.
- Si \mathcal{B}' est une autre base de E, si $P = Pass(\mathcal{B}, \mathcal{B}')$, alors la matrice de u dans la base \mathcal{B}' est : $A' = P^{-1}AP$.
- Ainsi deux matrices semblables sont deux matrices qui représentent le même endomorphisme dans des bases différentes.

Corollaire : Si $u \in \mathcal{L}(E)$, si $A = M_{\mathcal{B}}(u)$, tr(A) ne dépend pas de la base \mathcal{B} choisie. On la note tr(u) : c'est la trace de l'endomorphisme u.

Définition : Soient $A, B \in \mathcal{M}_{p,q}(\mathbb{K})$. A et B sont dites équivalentes si $\exists P \in GL_q(\mathbb{K}), \exists Q \in GL_p(\mathbb{K}) / B = Q^{-1}AP$.

Propriété: Deux matrices sont équivalentes si et seulement si elles ont le même rang.

Lemme : Si $M \in \mathcal{M}_{p,q}$, M est équivalentes à une matrice de format $p \times q$ où r = rg(M)

suivante : $\begin{pmatrix} 1 & & 0 & | & & & \\ & \ddots & & | & & 0 & \\ 0 & & 1 & | & & & \\ - & - & - & + & - & - & - & \\ & & & | & & & \\ 0 & & | & & 0 & \\ & & & | & & \end{pmatrix}_{p \times q} .$

Corollaire: $rg(t_M) = rg(M)$.

Opérations élémentaires sur les matrices :

Idée : effectuer une opération sur les lignes (resp. sur les colonnes) d'une matrice revient à multiplier cette matrice à gauche (resp. à droite) par une matrice inversible.

6

On applique les modification sur la matrice $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$.

•
$$L_i \leftarrow \alpha L_j : \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 pour faire $L_2 \leftarrow L_2 + \alpha L_1$.

•
$$L_i \leftrightarrow L_j$$
: $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ pour faire $L_1 \leftrightarrow L_2$.

•
$$L_i \leftrightarrow \alpha \cdot L_i$$
, $\alpha \neq 0$: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$ pour faire $L_3 \leftarrow \alpha \cdot L_3$.

Utilités:

- Résoudre un sustème d'équation linéaires.
- Calculer le rang d'une matrice.
- Calculer l'inverse d'une matrice (méthode de Gauss-Jordan).
- Calculer le déterminant.