MES CHAPITRE 3 : THÉORÈMES GÉNÉRAUX DE LA DYNAMIQUE DES SYSTÈMES FERMÉS

13/9/2011

1 Action mécanique sur un système :

Idée générale : On admet que les effets mécaniques qu'exerce un système Σ' sur un système Σ sont entièrement décrits par un torseur de résultante \overrightarrow{R} et par un moment résultant $\overrightarrow{\mathcal{M}}_{/A}$.

Force unique appliqué en un point : On applique \overrightarrow{F} en A. $\overrightarrow{\mathcal{M}}_{/A}$ n'est pas le moment de \overrightarrow{R} en A. $\overrightarrow{\mathcal{M}}_{/A} = \overrightarrow{AA} \wedge \overrightarrow{F} = \overrightarrow{0}$

Ensemble de forces : On applique $\{\overrightarrow{F_i}\}$ en $\{M_i\}$. $\begin{cases} \overrightarrow{R} = \sum \overrightarrow{F_i} \\ \overrightarrow{\mathcal{M}}_{/A} = \sum \overrightarrow{AM_i} \wedge \overrightarrow{F_i} = \overrightarrow{0} \end{cases}$

Couple : C'est une action particulière dont la résultante est nulle. $\left\{\begin{array}{l} \overrightarrow{R}=\overrightarrow{0}\\ \overrightarrow{\mathcal{M}}_{/A}=?\end{array}\right.$

Actions intérieures : Il y a des actions entre deux points quelconques M_i et M_j du système Σ étudié. $\begin{cases} \overrightarrow{R}_{\text{int}} = \overrightarrow{0} \\ \overrightarrow{\mathcal{M}}_{/A \text{ int}} = \overrightarrow{0} \end{cases}$

Principe des actions réciproques : Systèmes Σ_1 et Σ_2 . $\Sigma_1 \to \Sigma_2 : \left\{ \begin{array}{l} \overrightarrow{R}_{1 \to 2} \\ \overrightarrow{\mathcal{M}}_{/A \ 1 \to 2} \end{array} \right.$ et $\Sigma_2 \to \Sigma_1 : \left\{ \begin{array}{l} \overrightarrow{R}_{2 \to 1} \\ \overrightarrow{\mathcal{M}}_{/A \ 2 \to 1} \end{array} \right.$ $\left\{ \begin{array}{l} \overrightarrow{R}_{1 \to 2} = -\overrightarrow{R}_{2 \to 1} \\ \overrightarrow{\mathcal{M}}_{/A \ 1 \to 2} = -\overrightarrow{\mathcal{M}}_{/A \ 2 \to 1} \end{array} \right.$

2 Théorèmes généraux

Hyothèse et notations : Système Σ étudié dans ${\mathscr R}$ galiléen.

Actions extérieures $\left\{ \begin{array}{l} \overrightarrow{R}_{\rm ext} \\ \overrightarrow{\mathcal{M}}_{/A \, {\rm ext}} \end{array} \right.$

Théorème de la quantité de mouvement : $\overrightarrow{P}\left(\Sigma_{/\mathscr{R}}\right) = \overrightarrow{P}$.

$$\left(\frac{d\overrightarrow{P}}{dt}\right)_{/\mathscr{R}} = \overrightarrow{R}_{\rm ext}$$

Aussi appelé théorème de la résultante cinétique ou théorème de la résultante dynamique. Autre forme : $m\overrightarrow{a}(G) = \overrightarrow{R}_{\rm ext}$: théorème du centre de masse.

Théorème du moment cinétique en un point fixe $A: \overrightarrow{L}_{/A} = \overrightarrow{L}_{/A}(\Sigma_{/\mathscr{R}})$.

$$\left(\frac{d\overrightarrow{L}_{/A}}{dt}\right)_{/\mathscr{R}} = \overrightarrow{\mathcal{M}}_{/A \text{ ext}}$$

Théorème du moment cinétique par rapport à un axe orienté : $L_{/\Delta} = \overrightarrow{u} \cdot \overrightarrow{L}_{/A}$. On peut prendre A fixe $\in \Delta$.

$$\frac{dL_{/\Delta}}{dt}=\mathcal{M}_{/\Delta \text{ ext}}$$
 : théorème scalaire du moment cinétique

3 Théorèmes du moment cinétique et barycentre

En G dans \mathscr{R} :

$$\left(\frac{d\overrightarrow{L}_{/G}}{dt}\right)_{/\mathscr{R}} = \overrightarrow{\mathcal{M}}_{/G \text{ ext}} = \overrightarrow{\mathcal{M}}_{/A \text{ ext}} + \overrightarrow{R}_{\text{ext}} \wedge \overrightarrow{AG}$$

Dans \mathscr{R}^{\star} :

$$\left(\frac{d\overrightarrow{L}^{\star}}{dt}\right)_{\mathscr{R}^{\star}} = \overrightarrow{\mathcal{M}}_{/G \text{ ext}} \text{ même si } \mathscr{R}^{\star} \text{ non galiléen.}$$

Théorème du mouvement cinétique scalaire barycentrique : Soit un axe fixe Δ passant par G dans \mathscr{R}^* . \overrightarrow{u} vecteur unitaire de (Δ) .

$$\frac{dL_{/\Delta}^{\star}}{dt} = \mathcal{M}_{/\Delta \text{ ext}} : \text{TMCS}^{\star}$$

4 Actions de contacts entre deux solides

- Liaison rotule:
 - permet toues les rotations : 3 degrés de libertés.
 - Liaison parfaite si $\overrightarrow{\mathcal{M}}_{/O} = \overrightarrow{0}$.
- Liaison pivot :
 - Un seul degré de liberté : rotation autour d'un axe fixe Δ .
 - Liaison parfaite si $\mathcal{M}_{/\Delta} = 0$.

5 Cas des référentiels non galiléens

Si \mathscr{R}' est non galiléen, on rajoute les actions correspondantes aux forces d'inertie d'entrainement et de Coriolis.

$$d\overrightarrow{f_{ie}} = -dm_Q \overrightarrow{a_e}(Q) \Rightarrow \begin{cases} \overrightarrow{R} = \iiint -dm_Q \overrightarrow{a_e}(Q) \\ \overrightarrow{\mathcal{M}}_{/A} \iiint \overrightarrow{AQ} \wedge (-dm_Q \overrightarrow{a_e}(Q)) \end{cases}.$$

Si \mathscr{R}' est en translation par rapport à \mathscr{R} , la force de Coriolis n'intervient pas et $\overrightarrow{a_e}(Q) = \overrightarrow{a_e} = \overrightarrow{a}(O')_{/\mathscr{R}}$. $d\overrightarrow{f_{ie}} = -dm_Q \overrightarrow{a}(O')_{/\mathscr{R}}$.