CHANGEMENT DE RÉFÉRENTIEL

11/2/2011

Dans tout ce formulaire, \mathcal{R} désigne un référentiel galiléen (référentiel absolu) et \mathcal{R}' un référentiel non galiléen (référentiel relatif).

Formules de dérivation vectorielle :

$$\left(\frac{d\overrightarrow{U}}{dt}\right)_{/\mathscr{R}} = \left(\frac{d\overrightarrow{U}}{dt}\right)_{/\mathscr{R}'} + \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{U}$$

Composition des vecteurs rotations :

$$\overrightarrow{\Omega}_{\mathscr{R}''/\mathscr{R}} = \overrightarrow{\Omega}_{\mathscr{R}''/\mathscr{R}'} + \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}}$$

Loi de composition des vitesses:

- O point fixe de \mathscr{R} .
- O' point fixe de \mathscr{R}' .
- M se déplaçant dans \mathscr{R} et \mathscr{R}' .
- \bullet \mathscr{R}' a un mouvement quel conque par rapport à \mathscr{R}

$$\overrightarrow{v}_{M/\mathscr{R}} = \overrightarrow{v}_{M/\mathscr{R}'} + \overrightarrow{v}_{O'/\mathscr{R}} + \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{O'M}$$

 $\overrightarrow{v}_{M/\mathscr{R}}$: vitesse absolue.

 $\overrightarrow{v}_{M/\mathscr{R}'}$: vitesse relative.

 $\overrightarrow{v}_{O'/\mathscr{R}} + \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{O'M} = \overrightarrow{v_e}$: vitesse d'entrainement, calculée en M, de \mathscr{R}' par rapport à \mathscr{R} : c'est la vitesse qu'aurait M dans \mathscr{R} s'il était fixe dans \mathscr{R}' .

- Translation de \mathcal{R}' par rapport à \mathcal{R} :
- $-\overrightarrow{v_e} = \overrightarrow{v}_{O'/\mathscr{R}} \\ -\overrightarrow{v}_{M/\mathscr{R}} = \overrightarrow{v}_{M/\mathscr{R}'} + \overrightarrow{v}_{O'/\mathscr{R}}$ Rotation de \mathscr{R}' par rapport à \mathscr{R} autour d'un axe fixe :
 - $\overrightarrow{v_e} = \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{HM}$ avec H le projeté orthogonal de M sur l'axe fixe.
 - $-\overrightarrow{v}_{M/\mathscr{R}} = \overrightarrow{v}_{M/\mathscr{R}'} + \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{HM}$

Loi de composition des accélérations :

$$\overrightarrow{a}_{M/\mathscr{R}} = \overrightarrow{a}_{M/\mathscr{R}'} + \overrightarrow{a_e} + \overrightarrow{a_c}$$

- $\overrightarrow{a}_{M/\mathscr{R}}$: accélération absolue.
- $\overrightarrow{a}_{M/\mathscr{R}'}$: accélération relative.
- $\overrightarrow{a_e}$: accélération d'entrainement (voir expression ci-après). $\overrightarrow{a_c}$: accélération de Coriolis (voir expression ci-après).

Accélération d'entrainement :

- Translation de \mathscr{R}' par rapport à $\mathscr{R}: \overrightarrow{a_e} = \overrightarrow{a}_{O'/\mathscr{R}}$
- Rotation de \mathcal{R}' par rapport à \mathcal{R} autour d'un axe fixe :
 - Rotation uniforme : $\overrightarrow{a_e} = -\Omega^2_{\mathscr{R}'/\mathscr{R}} \cdot \overrightarrow{HM}$
 - Rotation non uniforme : $\overrightarrow{a_e} = \left(\frac{d\overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}}}{dt}\right)_{/\mathscr{R}} \wedge \overrightarrow{HM} \Omega^2_{\mathscr{R}'/\mathscr{R}} \cdot \overrightarrow{HM}$

Attention : $\overrightarrow{a_e} \neq \left(\frac{d\overrightarrow{v_e}}{dt}\right)_{/\mathscr{R}}$

Accélération de Coriolis :

$$\overrightarrow{a_c} = 2\overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{v}_{M/\mathscr{R}'}$$

R.F.D. dans un référentiel non galiléen :

$$m \cdot \overrightarrow{a}_{M/\mathscr{R}'} = \sum \overrightarrow{F} \underbrace{-m \cdot \overrightarrow{a_e}}_{\overrightarrow{F}_{ie}} \underbrace{-m \cdot \overrightarrow{a_c}}_{\overrightarrow{F}_{ic}}$$

Immobilité dans un référentiel non galiléen : équilibre relatif

$$m \cdot \overrightarrow{a}_{M/\mathscr{R}'} = \sum \overrightarrow{F} + \overrightarrow{F}_{ie}$$

T.M.C. en référentiel non galiléen :

$$\left(\frac{d\overrightarrow{L_{o'}}(M)_{\mathscr{R}'}}{dt}\right)_{\mathscr{R}'} = \sum \overrightarrow{\mathcal{M}}_{o'}(\overrightarrow{F}) + \overrightarrow{\mathcal{M}}_{o'}(\overrightarrow{F}_{ie}) + \overrightarrow{\mathcal{M}}_{o'}(\overrightarrow{F}_{ic})$$

Énergie potentiel centrifuge : \mathscr{R}' tournant uniformément autour d'un axe fixe. par rapport à \mathscr{R} .

$$E_{\text{p centrifuge}} = \frac{-m\Omega_{\mathcal{R}'/\mathcal{R}}^2 \cdot HM^2}{2} + \text{constante}$$

T.P.C. en référentiel non galiléen :

$$\left(\frac{dE_c(M)_{/\mathscr{R}'}}{dt}\right) = \sum \mathcal{P}(\overrightarrow{F})_{/\mathscr{R}'} + \mathcal{P}(\overrightarrow{F}_{ie})_{/\mathscr{R}'}$$

T.E.C. en référentiel non galiléen :

Forme différentielle :
$$dE_c(M)_{/\mathscr{R}'} = \sum \delta \mathcal{W}(\overrightarrow{F})_{/\mathscr{R}'} + \delta \mathcal{W}(\overrightarrow{F}_{ie})_{/\mathscr{R}'}$$

Forme intégrée :
$$\Delta E_c(M)_{\mathscr{R}'} = \sum \mathcal{W}(\overrightarrow{F})_{\mathscr{R}'} + \mathcal{W}(\overrightarrow{F}_{ie})_{\mathscr{R}'}$$

T.P.M. en référentiel galiléen :

$$\left(\frac{dE_m(M)_{/\mathscr{R}'}}{dt}\right) = \sum \mathcal{P}(\overrightarrow{F}^{nc})_{/\mathscr{R}'}$$

2

T.E.M. en référentiel non galiéen :

Forme différentielle :
$$dE_m(M)_{/\mathscr{R}'} = \sum \delta \mathcal{W}(\overrightarrow{F})_{/\mathscr{R}'}$$

Forme intégrée :
$$\Delta E_m(M)_{/\mathscr{R}'} = \sum \mathcal{W}(\overrightarrow{F})_{/\mathscr{R}'}$$

Poids d'un corps:

$$\overrightarrow{P} = -\frac{G \cdot m \cdot M_T \cdot \overrightarrow{TM}}{TM^3} + m \cdot \Omega^2_{\mathscr{R}_T/\mathscr{R}_g} \cdot \overrightarrow{HM}$$

$$\overrightarrow{g} = -\underbrace{\frac{G \cdot M_T \cdot \overrightarrow{TM}}{TM^3}}_{\text{champ gravitationnel terrerstre}} + \underbrace{\Omega^2_{\mathscr{R}_T/\mathscr{R}_g} \cdot \overrightarrow{HM}}_{\approx 0.034 \text{m·s}^{-2} \text{ à l'équateur}}$$

$$\approx 9.8 \text{m·s}^{-2} \text{ à la surface de la Terre}$$